本文整理匯總了Python中Bio.KDTree.KDTree類的典型用法代碼示例。如果您正苦於以下問題:Python KDTree類的具體用法?Python KDTree怎麽用?Python KDTree使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了KDTree類的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_all_search
def test_all_search(nr_points, dim, bucket_size, query_radius):
"""Test fixed neighbor search.
Search all point pairs that are within radius.
Arguments:
- nr_points: number of points used in test
- dim: dimension of coords
- bucket_size: nr of points per tree node
- query_radius: radius of search
Returns true if the test passes.
"""
kdt = KDTree(dim, bucket_size)
coords = random.random((nr_points, dim))
kdt.set_coords(coords)
kdt.all_search(query_radius)
indices = kdt.all_get_indices()
if indices is None:
l1 = 0
else:
l1 = len(indices)
radii = kdt.all_get_radii()
if radii is None:
l2 = 0
else:
l2 = len(radii)
if l1 == l2:
return True
else:
return False
示例2: _apply_KDTree
def _apply_KDTree(self, group):
"""Selection using KDTree but periodic = True not supported.
"""
sel = self.sel.apply(group)
ref = sel.center_of_geometry()
kdtree = KDTree(dim=3, bucket_size=10)
kdtree.set_coords(group.positions)
kdtree.search(ref, self.exRadius)
found_ExtIndices = kdtree.get_indices()
kdtree.search(ref, self.inRadius)
found_IntIndices = kdtree.get_indices()
found_indices = list(set(found_ExtIndices) - set(found_IntIndices))
return unique(group[found_indices])
示例3: test_search
def test_search(nr_points, dim, bucket_size, radius):
"""Test search all points within radius of center.
Search all point pairs that are within radius.
Arguments:
- nr_points: number of points used in test
- dim: dimension of coords
- bucket_size: nr of points per tree node
- radius: radius of search
Returns true if the test passes.
"""
kdt = KDTree(dim, bucket_size)
coords = random.random((nr_points, dim))
kdt.set_coords(coords)
kdt.search(coords[0], radius * 100)
radii = kdt.get_radii()
l1 = 0
for i in range(0, nr_points):
p = coords[i]
if _dist(p, coords[0]) <= radius * 100:
l1 = l1 + 1
if l1 == len(radii):
return True
else:
return False
示例4: _apply_KDTree
def _apply_KDTree(self, group):
"""KDTree based selection is about 7x faster than distmat for typical problems.
Limitations: always ignores periodicity
"""
# group is wrong, should be universe (?!)
sel_atoms = self.sel._apply(group)
# list needed for back-indexing
sys_atoms_list = [a for a in (self._group_atoms - sel_atoms)]
sel_indices = numpy.array([a.index for a in sel_atoms], dtype=int)
sys_indices = numpy.array([a.index for a in sys_atoms_list], dtype=int)
sel_coor = Selection.coord[sel_indices]
kdtree = KDTree(dim=3, bucket_size=10)
kdtree.set_coords(Selection.coord[sys_indices])
found_indices = []
for atom in numpy.array(sel_coor):
kdtree.search(atom, self.cutoff)
found_indices.append(kdtree.get_indices())
# the list-comprehension here can be understood as a nested loop.
# for list in found_indices:
# for i in list:
# yield sys_atoms_list[i]
# converting found_indices to a numpy array won't reallt work since
# each we will find a different number of neighbors for each center in
# sel_coor.
res_atoms = [sys_atoms_list[i] for list in found_indices for i in list]
return set(res_atoms)
示例5: test_KDTree_exceptions
def test_KDTree_exceptions(self):
kdt = KDTree(dim, bucket_size)
with self.assertRaises(Exception) as context:
kdt.set_coords(random.random((nr_points, dim)) * 100000000000000)
self.assertTrue("Points should lie between -1e6 and 1e6" in str(context.exception))
with self.assertRaises(Exception) as context:
kdt.set_coords(random.random((nr_points, dim - 2)))
self.assertTrue("Expected a Nx%i NumPy array" % dim in str(context.exception))
with self.assertRaises(Exception) as context:
kdt.search(array([0, 0, 0]), radius)
self.assertTrue("No point set specified" in str(context.exception))
示例6: __init__
def __init__(self, atom_list, bucket_size=10):
"""
o atom_list - list of atoms. This list is used in the queries.
It can contain atoms from different structures.
o bucket_size - bucket size of KD tree. You can play around
with this to optimize speed if you feel like it.
"""
self.atom_list=atom_list
# get the coordinates
coord_list = [a.get_coord() for a in atom_list]
# to Nx3 array of type float
self.coords=numpy.array(coord_list).astype("f")
assert(bucket_size>1)
assert(self.coords.shape[1]==3)
self.kdt=KDTree(3, bucket_size)
self.kdt.set_coords(self.coords)
示例7: __init__
def __init__(self, atom_group, bucket_size=10):
"""
Parameters
----------
atom_list : AtomGroup
list of atoms
bucket_size : int
Number of entries in leafs of the KDTree. If you suffer poor
performance you can play around with this number. Increasing the
`bucket_size` will speed up the construction of the KDTree but
slow down the search.
"""
self.atom_group = atom_group
self.kdtree = KDTree(dim=3, bucket_size=bucket_size)
self.kdtree.set_coords(atom_group.positions)
示例8: __init__
def __init__(self, atom_group, bucket_size=10):
"""
:Arguments:
*atom_list*
list of atoms (:class: `~MDAnalysis.core.AtomGroup.AtomGroup`)
*bucket_size*
Number of entries in leafs of the KDTree. If you suffer poor
performance you can play around with this number. Increasing the
`bucket_size` will speed up the construction of the KDTree but
slow down the search.
"""
self.atom_group = atom_group
if not hasattr(atom_group, 'coordinates'):
raise TypeError('atom_group must have a coordinates() method'
'(eq a AtomGroup from a selection)')
self.kdtree = KDTree(dim=3, bucket_size=bucket_size)
self.kdtree.set_coords(atom_group.coordinates())
示例9: _apply_KDTree
def _apply_KDTree(self, group):
"""KDTree based selection is about 7x faster than distmat
for typical problems.
Limitations: always ignores periodicity
"""
sel = self.sel.apply(group)
# All atoms in group that aren't in sel
sys = group[~np.in1d(group.indices, sel.indices)]
kdtree = KDTree(dim=3, bucket_size=10)
kdtree.set_coords(sys.positions)
found_indices = []
for atom in sel.positions:
kdtree.search(atom, self.cutoff)
found_indices.append(kdtree.get_indices())
# These are the indices from SYS that were seen when
# probing with SEL
unique_idx = np.unique(np.concatenate(found_indices))
return sys[unique_idx.astype(np.int32)].unique
示例10: NeighborSearch
class NeighborSearch(object):
"""Class for neighbor searching,
This class can be used for two related purposes:
1. To find all atoms/residues/chains/models/structures within radius
of a given query position.
2. To find all atoms/residues/chains/models/structures that are within
a fixed radius of each other.
NeighborSearch makes use of the Bio.KDTree C++ module, so it's fast.
"""
def __init__(self, atom_list, bucket_size=10):
"""Create the object.
Arguments:
- atom_list - list of atoms. This list is used in the queries.
It can contain atoms from different structures.
- bucket_size - bucket size of KD tree. You can play around
with this to optimize speed if you feel like it.
"""
self.atom_list = atom_list
# get the coordinates
coord_list = [a.get_coord() for a in atom_list]
# to Nx3 array of type float
self.coords = numpy.array(coord_list).astype("f")
assert bucket_size > 1
assert self.coords.shape[1] == 3
self.kdt = KDTree(3, bucket_size)
self.kdt.set_coords(self.coords)
# Private
def _get_unique_parent_pairs(self, pair_list):
# translate a list of (entity, entity) tuples to
# a list of (parent entity, parent entity) tuples,
# thereby removing duplicate (parent entity, parent entity)
# pairs.
# o pair_list - a list of (entity, entity) tuples
parent_pair_list = []
for (e1, e2) in pair_list:
p1 = e1.get_parent()
p2 = e2.get_parent()
if p1 == p2:
continue
elif p1 < p2:
parent_pair_list.append((p1, p2))
else:
parent_pair_list.append((p2, p1))
return uniqueify(parent_pair_list)
# Public
def search(self, center, radius, level="A"):
"""Neighbor search.
Return all atoms/residues/chains/models/structures
that have at least one atom within radius of center.
What entity level is returned (e.g. atoms or residues)
is determined by level (A=atoms, R=residues, C=chains,
M=models, S=structures).
Arguments:
- center - Numeric array
- radius - float
- level - char (A, R, C, M, S)
"""
if level not in entity_levels:
raise PDBException("%s: Unknown level" % level)
self.kdt.search(center, radius)
indices = self.kdt.get_indices()
n_atom_list = []
atom_list = self.atom_list
for i in indices:
a = atom_list[i]
n_atom_list.append(a)
if level == "A":
return n_atom_list
else:
return unfold_entities(n_atom_list, level)
def search_all(self, radius, level="A"):
"""All neighbor search.
Search all entities that have atoms pairs within
radius.
Arguments:
- radius - float
- level - char (A, R, C, M, S)
"""
if level not in entity_levels:
raise PDBException("%s: Unknown level" % level)
self.kdt.all_search(radius)
indices = self.kdt.all_get_indices()
atom_list = self.atom_list
#.........這裏部分代碼省略.........
示例11: anal_contacts
def anal_contacts(prot,rfirst,mols,cutoff,midz,box,molfile,resfile,
burresfile=None,buried=None,reslist=None,reslistfile=None) :
"""
Calculates a range of contacts and write out contact vectors to files
Parameters
----------
prot : AtomSelection
the protein atoms
rfirst : NumpyArray
the first atom of each residue in the protein
mols : NumpyArray
the centroid of the molecule of interest
cutoff : float
the contact cut-off
midz : float
the middle of the bilayer
box : NumpyArray
the box sides
molfile : fileobject
the file to write molecular contacts to
resfile : fileobject
the file to write residue contacts to
burresfile : fileobject, optional
the file to write buried residue contacts to
buried : NumpyArray of boolean, optional
flag to indicate buried molecule
reslist : list
a list of residues to write out individual mol contacts
reslistfile : fileobject
the file to write out individual mol contacts to
"""
molon = np.zeros(len(mols),dtype=bool)
reson = np.zeros(len(rfirst)-1,dtype=bool)
if buried is not None :
burreson = np.zeros(len(rfirst)-1,dtype=bool)
if reslist is not None :
resonlist = np.zeros([len(reslist),len(mols)],dtype=bool)
# Calculate all distances at once
if box is not None :
dist_all = distances.distance_array(np.array(mols), prot.get_positions(), box)
else :
kdtree = KDTree(dim=3, bucket_size=10)
kdtree.set_coords(prot.get_positions())
# Loop over all molecules
for mi,mol in enumerate(mols) :
if box is not None :
dist = dist_all[mi,:]
else :
dist = np.ones(prot.get_positions().shape[0])+cutoff
kdtree.search(np.array([mol]), cutoff)
for i in kdtree.get_indices() : dist[i] = 0.0
# Check if this molecule is on
molon[mi] = dist.min() < cutoff
if molon[mi] :
# Check contacts for reach residue
for i in range(len(rfirst)-1) :
if dist[rfirst[i]:rfirst[i+1]].min() < cutoff :
if (burresfile is not None and buried[mi]) :
burreson[i] = True
else :
reson[i] = True
if reslist is not None and i in reslist:
resonlist[reslist.index(i),mi] = True
# Write state information to file
write_booleans(molfile,molon)
write_booleans(resfile,reson)
if buried is not None :
write_booleans(burresfile,burreson)
if reslist is not None:
write_booleans(reslistfile,resonlist.reshape(len(reslist)*len(mols)))
示例12: AtomNeighborSearch
class AtomNeighborSearch(object):
"""This class can be used to find all atoms/residues/segements within the
radius of a given query position.
This class is using the BioPython KDTree for the neighborsearch. This class
also does not apply PBC to the distance calculattions. So you have to ensure
yourself that the trajectory has been corrected for PBC artifacts.
"""
def __init__(self, atom_group, bucket_size=10):
"""
Parameters
----------
atom_list : AtomGroup
list of atoms
bucket_size : int
Number of entries in leafs of the KDTree. If you suffer poor
performance you can play around with this number. Increasing the
`bucket_size` will speed up the construction of the KDTree but
slow down the search.
"""
self.atom_group = atom_group
self.kdtree = KDTree(dim=3, bucket_size=bucket_size)
self.kdtree.set_coords(atom_group.positions)
def search(self, atoms, radius, level='A'):
"""
Return all atoms/residues/segments that are within *radius* of the
atoms in *atoms*.
Parameters
----------
atoms : AtomGroup
list of atoms
radius : float
Radius for search in Angstrom.
level : str
char (A, R, S). Return atoms(A), residues(R) or segments(S) within
*radius* of *atoms*.
"""
indices = []
for atom in atoms.coordinates():
self.kdtree.search(atom, radius)
indices.append(self.kdtree.get_indices())
unique_idx = np.unique([i for l in indices for i in l])
return self._index2level(unique_idx, level)
def _index2level(self, indices, level):
"""Convert list of atom_indices in a AtomGroup to either the
Atoms or segments/residues containing these atoms.
Parameters
----------
indices
list of atom indices
level : str
char (A, R, S). Return atoms(A), residues(R) or segments(S) within
*radius* of *atoms*.
"""
n_atom_list = [self.atom_group[i] for i in indices]
if level == 'A':
if len(n_atom_list) == 0:
return []
else:
return AtomGroup(n_atom_list)
elif level == 'R':
return list({a.residue for a in n_atom_list})
elif level == 'S':
return list(set([a.segment for a in n_atom_list]))
else:
raise NotImplementedError('{0}: level not implemented'.format(level))
示例13: anal_jointdist
def anal_jointdist(prot,rfirst,mols,cutoff,midz,box,mat,matburr,buried=None) :
"""
Calculates the joint probability of residue interactions
Parameters
----------
prot : AtomSelection
the protein atoms
rfirst : NumpyArray
the first atom of each residue in the protein
mols : NumpyArray
the centroid of the molecule of interest
cutoff : float
the contact cut-off
midz : float
the middle of the bilayer
box : NumpyArray
the box sides
mat : NumpyArray
the joint probability for non-buried molecules
matburr : NumpyArray
the joint probability for buried molecules
buried : NumpyArray of boolean, optional
flag to indicate buried molecule
"""
imat = np.zeros(mat.shape)
imatburr = np.zeros(matburr.shape)
# Calculate all distances at once
if box is not None :
dist_all = distances.distance_array(np.array(mols), prot.get_positions(), box)
else :
kdtree = KDTree(dim=3, bucket_size=10)
kdtree.set_coords(prot.get_positions())
# Loop over all molecules
for mi,mol in enumerate(mols) :
if box is not None :
dist = dist_all[mi,:]
else :
dist = np.ones(prot.get_positions().shape[0])+cutoff
kdtree.search(np.array([mol]), cutoff)
for i in kdtree.get_indices() : dist[i] = 0.0
# Check if this molecule is on
if dist.min() >= cutoff : continue
# Check contacts for reach residue
for i in range(len(rfirst)-1) :
if dist[rfirst[i]:rfirst[i+1]].min() >= cutoff : continue
if (buried is not None and buried[mi]) :
imatburr[i,i] = 1
else :
imat[i,i] = 1
for j in range(i+1,len(rfirst)-1) :
if dist[rfirst[j]:rfirst[j+1]].min() >= cutoff : continue
if (buried is not None and buried[mi]) :
imatburr[i,j] = 1
imatburr[j,i] = 1
else :
imat[i,j] = 1
imat[j,i] = 1
return (mat+imat,matburr+imatburr)
示例14: AtomNeighborSearch
class AtomNeighborSearch():
"""This class can be used to find all atoms/residues/segements within the
radius of a given query position.
This class is using the BioPython KDTree for the neighborsearch. This class
also does not apply PBC to the distance calculattions. So you have to ensure
yourself that the trajectory has been corrected for PBC artifacts.
"""
def __init__(self, atom_group, bucket_size=10):
"""
:Arguments:
*atom_list*
list of atoms (:class: `~MDAnalysis.core.AtomGroup.AtomGroup`)
*bucket_size*
Number of entries in leafs of the KDTree. If you suffer poor
performance you can play around with this number. Increasing the
`bucket_size` will speed up the construction of the KDTree but
slow down the search.
"""
self.atom_group = atom_group
if not hasattr(atom_group, 'coordinates'):
raise TypeError('atom_group must have a coordinates() method'
'(eq a AtomGroup from a selection)')
self.kdtree = KDTree(dim=3, bucket_size=bucket_size)
self.kdtree.set_coords(atom_group.coordinates())
def search(self, atoms, radius, level='A'):
"""
Return all atoms/residues/segments that are within *radius* of the
atoms in *atoms*.
:Arguments:
*atoms*
list of atoms (:class: `~MDAnalysis.core.AtomGroup.AtomGroup`)
*radius*
float. Radius for search in Angstrom.
*level* (optional)
char (A, R, S). Return atoms(A), residues(R) or segments(S) within
*radius* of *atoms*.
"""
indices = []
for atom in atoms.coordinates():
self.kdtree.search(atom, radius)
indices.append(self.kdtree.get_indices())
unique_idx = numpy.unique([i for l in indices for i in l])
return self._index2level(unique_idx, level)
def _index2level(self, indices, level):
""" Convert list of atom_indices in a AtomGroup to either the
Atoms or segments/residues containing these atoms.
:Arguments:
*indices*
list of atom indices
*level*
char (A, R, S). Return atoms(A), residues(R) or segments(S) within
*radius* of *atoms*.
"""
n_atom_list = [self.atom_group[i] for i in indices]
if level == 'A':
if len(n_atom_list) == 0:
return []
else:
return AtomGroup(n_atom_list)
elif level == 'R':
return list(set([a.residue for a in n_atom_list]))
elif level == 'S':
return list(set([a.segment for a in n_atom_list]))
else:
raise NotImplementedError('{}: level not implemented'.format(level))