當前位置: 首頁>>代碼示例>>Python>>正文


Python Bio.LogisticRegression類代碼示例

本文整理匯總了Python中Bio.LogisticRegression的典型用法代碼示例。如果您正苦於以下問題:Python LogisticRegression類的具體用法?Python LogisticRegression怎麽用?Python LogisticRegression使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了LogisticRegression類的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_calculate_model_with_update_callback

 def test_calculate_model_with_update_callback(self):
     model = LogisticRegression.train(xs, ys, update_fn=show_progress)
     beta = model.beta
     self.assertAlmostEqual(beta[0], 8.9830, places=4)
開發者ID:BIGLabHYU,項目名稱:biopython,代碼行數:4,代碼來源:test_LogisticRegression.py

示例2: str

from Bio import LogisticRegression
import numpy as np


all_data = np.loadtxt("../datasets/iris/iris.data", delimiter=",",
                      dtype="float, float, float, float, S11")

xs = []
ys = []

for i in all_data:
    if 'virgi' not in str(i[-1]):
        xs.append([i[0], i[1], i[2], i[3]])
        if 'setosa' in str(i[-1]):
            ys.append(0)
        else:
            ys.append(1)

test_xs = xs.pop()
test_ys = ys.pop()


def show_progress(iteration, loglikelihood):
    print("Iteration:", iteration, "Log-likelihood function:", loglikelihood)

model = LogisticRegression.train(xs, ys, update_fn=show_progress)
print("This should be Iris-versic (1): {}".format(LogisticRegression.classify(model, test_xs)))
開發者ID:carlosp420,項目名稱:algorithms-exercises,代碼行數:27,代碼來源:using_biopython.py

示例3: post

	def post(self):
		alldata = self.getRequestData()
		user = self.objUserInfo
		s=Entity.model(self.db)
		print(alldata)
		if alldata['model_type']==1:
			xss=alldata['xs'].split()
			xs=[]
			ys=[]
			q=0
			for i in xss:
				xs.append([float(i.split(',')[0]),float(i.split(',')[1])])
			for i in range(len(xs)):
				ys.append(int(alldata['ys'].split(',')[q]))
				q=q+1
			print(len(xs),len(ys))
			model=LogisticRegression.train(xs,ys)
			if model.beta:
				lsData={
					"create_id"	:	user['id'],
					"name"		:	alldata['name'],
					"beta"	:	str(model.beta),
				        "note"			:	alldata['note']
			
					}
				id = s.save(lsData,table='public.logistis')
				self.response(id)			
		elif alldata['model_type']==2:
			xss=alldata['xs'].split()
			xs=[]
			ys=[]
			q=0
			for i in xss:
				xs.append([float(i.split(',')[0]),float(i.split(',')[1])])
			for i in range(len(xs)):
				ys.append(int(alldata['ys'].split(',')[q]))
				q=q+1
			print(xs,ys)
			print(xs,ys)
			count=1
			while count >= 0 :
				rpath = str(random.randint(10000, 90000))
				pyfile='/home/ubuntu/pythonff/mdt/mdt/mdtproject/trunk/service/data_mining/'+rpath+'.py'
				if not os.path.isfile(pyfile):
					count=-1
				else:
					count=1
				
				
			
			f=open(pyfile,'w')
			text = 'from Bio import kNN'+'\n'+'class model():'+'\n'+'	def knn(self):'+'\n'+'		xs = '+str(xs)+'\n'+'		ys ='+str(ys)+'\n'+'		k='+str(alldata['k'])+'\n'+'		model = kNN.train(xs,ys,k)'+'\n'+'		return model'
			print(text)
			f.write(text)
			f.close()
			if os.path.isfile(pyfile):
				lsData={
					"create_id"	:	user['id'],
				        "name"  	:	alldata['name'],
					"file_name"	:	rpath,
				        "packpath"	:	pyfile,
				        "type"          :       '2',
					"note"		:	alldata['note']
				       }
				id = s.save(lsData,table='public.pymodel')
				self.response(id)					
		elif alldata['model_type']==3:
			xss=alldata['xs'].split()
			xs=[]
			ys=[]
			q=0
			for i in xss:
				xs.append([float(i.split(',')[0]),float(i.split(',')[1])])
			for i in range(len(xs)):
				ys.append(int(alldata['ys'].split(',')[q]))
				q=q+1
			print(xs,ys)
			count=1
			while count >= 0 :
				rpath = str(random.randint(10000, 90000))
				pyfile='/home/ubuntu/pythonff/mdt/mdt/mdtproject/trunk/service/data_mining/'+rpath+'.py'
				if not os.path.isfile(pyfile):
					count=-1
				else:
					count=1
			f=open(pyfile,'w')
			text = 'from Bio import NaiveBayes'+'\n'+'class model():'+'\n'+'	def bayes(self):'+'\n'+'		xs = '+str(xs)+'\n'+'		ys ='+str(ys)+'\n'+'		model = NaiveBayes.train(xs,ys)'+'\n'+'		return model'
			print(text)
			f.write(text)
			f.close()
			if os.path.isfile(pyfile):
				lsData={
				"create_id"	:	user['id'],
				"name"  	:	alldata['name'],
				"file_name"	:	rpath,
				"packpath"	:	pyfile,
				"type"          :       '3',
				"note"		:	alldata['note']
				}
			id = s.save(lsData,table='public.pymodel')
#.........這裏部分代碼省略.........
開發者ID:LiangHe266,項目名稱:Biotornadohl,代碼行數:101,代碼來源:list.py

示例4: get

	def get(self):
		offset   = int(self.get_argument('o',default='1'))
		rowcount = int(self.get_argument('r',default='10'))
		offset=(offset-1)*rowcount
		no = self.get_argument('no', default='')
		model_id = self.get_argument('model_id', default='')
		model_type = self.get_argument('model_type', default='')
		package=self.get_argument('model_name', default='')
		cur=self.db.getCursor()
		rowdata={}
		#查詢
		if no=='1':
			if model_type =='1':
				cur.execute(" select b.name,a.create_id,a.name,a.note,a.beta from public.logistis a "
				            " left join public.account b on a.create_id = b.id "
						"where a.id='%s'  "% (model_id) )
				rows = cur.fetchall()
				print(rows)
				rowdata['struct']="id,create_id,name,note,beta "
				rowdata['rows']= rows
			else:
				cur.execute(" select b.name,a.create_id,a.name,a.note,c.name,a.file_name from public.pymodel a "
					    " left join public.account b on a.create_id = b.id "
				            " left join public.model c on a.type = c.type "
					    " where a.id='%s' and a.type='%s' "% (model_id,model_type) )
				rows = cur.fetchall()
				rowdata['struct']="id,create_id,name,note,type,filename "
				rowdata['rows']= rows				
			self.response(rowdata)
		elif no=='2':
			if model_type=='1':
				beta = self.get_argument('beta', default='')
				model_data=self.get_argument('model', default='')
				a=[]
				q=0
				print(model_data)
				a=(list(eval(model_data)))	
				model=LogisticRegression.LogisticRegression()
				model.beta=(list(eval(beta)))
				rowdata={}
				rowdata['op']=LogisticRegression.calculate(model,a)
				rowdata['rows']=LogisticRegression.classify(model,a)
			elif model_type=='2':
				pack='data_mining.'+package
				import importlib
				bb=importlib.import_module(pack)
				ma=kNN.kNN()
				model=bb.model.knn(ma)
				model_data=self.get_argument('model', default='')
				a=[]
				a=(list(eval(model_data)))	
				rowdata={}
				rowdata['op']=kNN.calculate(model,a)
				rowdata['rows']=kNN.classify(model,a)			
			elif model_type=='3':
				pack='data_mining.'+package
				import importlib
				bb=importlib.import_module(pack)
				ma=NaiveBayes.NaiveBayes()
				model=bb.model.bayes(ma)
				model_data=self.get_argument('model', default='')
				a=[]
				a=(list(eval(model_data)))	
				rowdata={}
				rowdata['op']=NaiveBayes.calculate(model,a)
				rowdata['rows']=NaiveBayes.classify(model,a)				
		
			self.response(rowdata)
開發者ID:LiangHe266,項目名稱:Biotornadohl,代碼行數:68,代碼來源:list.py


注:本文中的Bio.LogisticRegression類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。