本文整理匯總了Python中WLanalysis.weighted_smooth方法的典型用法代碼示例。如果您正苦於以下問題:Python WLanalysis.weighted_smooth方法的具體用法?Python WLanalysis.weighted_smooth怎麽用?Python WLanalysis.weighted_smooth使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類WLanalysis
的用法示例。
在下文中一共展示了WLanalysis.weighted_smooth方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: KSmap_massproduce
# 需要導入模塊: import WLanalysis [as 別名]
# 或者: from WLanalysis import weighted_smooth [as 別名]
def KSmap_massproduce(iiRcosmo):
'''Input:
iiRcosmo = [i, R, cosmo]
i: subfield range from (1, 2..13)
R: realization range from (1..1000)
cosmo: one of the 1000 cosmos
Return:
KS inverted map
'''
i, R, cosmo = iiRcosmo
create_kmap = 0
for sigmaG in sigmaG_arr:
KS_fn = KSfn(i, cosmo, R, sigmaG)
if not os.path.isfile(KS_fn):
create_kmap = 1
break
if create_kmap:
print 'Mass Produce, creating KS: ', i, R, cosmo
Me1, Me2 = fileGen(i, R, cosmo)
for sigmaG in sigmaG_arr:
KS_fn = KSfn(i, cosmo, R, sigmaG)
Me1_smooth = WLanalysis.weighted_smooth(Me1, Mw, PPA=PPA512, sigmaG=sigmaG)
Me2_smooth = WLanalysis.weighted_smooth(Me2, Mw, PPA=PPA512, sigmaG=sigmaG)
kmap = WLanalysis.KSvw(Me1_smooth, Me2_smooth)
np.save(KS_fn, kmap)
示例2: KSmap
# 需要導入模塊: import WLanalysis [as 別名]
# 或者: from WLanalysis import weighted_smooth [as 別名]
def KSmap(iinput):
'''Input:
i = ith zbin for zcut
hl = 'hi' or 'lo' for higher/lower z of the zcut
sigmaG: smoothing scale
Wx = 1..4 of the field
Output:
smoothed KS map and galn map.
'''
Wx, sigmaG, i, hl = iinput
print 'Wx, sigmaG, i, hl:', Wx, sigmaG, i, hl
kmap_fn = cat_dir+'KS/W%i_KS_%s_%s_sigmaG%02d.fit'%(Wx, zbins[i],hl,sigmaG*10)
galn_smooth_fn = cat_dir+'KS/W%i_galn_%s_%s_sigmaG%02d.fit'%(Wx, zbins[i],hl,sigmaG*10)
isfile_kmap, kmap = WLanalysis.TestFitsComplete(kmap_fn, return_file = True)
if isfile_kmap == False:
Me1_fn = cat_dir+'Me_Mw_galn/W%i_Me1w_%s_%s.fit'%(Wx, zbins[i],hl)
Me2_fn = cat_dir+'Me_Mw_galn/W%i_Me2w_%s_%s.fit'%(Wx, zbins[i],hl)
Mw_fn = cat_dir+'Me_Mw_galn/W%i_Mwm_%s_%s.fit'%(Wx, zbins[i],hl)
Me1 = WLanalysis.readFits(Me1_fn)
Me2 = WLanalysis.readFits(Me2_fn)
Mw = WLanalysis.readFits(Mw_fn)
Me1_smooth = WLanalysis.weighted_smooth(Me1, Mw, PPA=PPA512, sigmaG=sigmaG)
Me2_smooth = WLanalysis.weighted_smooth(Me2, Mw, PPA=PPA512, sigmaG=sigmaG)
kmap = WLanalysis.KSvw(Me1_smooth, Me2_smooth)
WLanalysis.writeFits(kmap,kmap_fn)
isfile_galn, galn_smooth = WLanalysis.TestFitsComplete(galn_smooth_fn, return_file = True)
if isfile_galn == False:
galn_fn = cat_dir+'Me_Mw_galn/W%i_galn_%s_%s.fit'%(Wx, zbins[i],hl)
galn = WLanalysis.readFits(galn_fn)
galn_smooth = WLanalysis.smooth(galn, sigma=sigmaG*PPA512)
WLanalysis.writeFits(galn_smooth, galn_smooth_fn)
示例3: randmap
# 需要導入模塊: import WLanalysis [as 別名]
# 或者: from WLanalysis import weighted_smooth [as 別名]
def randmap (iseed, Wx=Wx):
Me1rnd, Me2rnd = WLanalysis.rndrot(Me1, Me2, iseed=iseed)
Me1smooth = WLanalysis.weighted_smooth(Me1rnd, Mwm)
Me2smooth = WLanalysis.weighted_smooth(Me2rnd, Mwm)
kmap_rand = WLanalysis.KSvw(Me1smooth, Me2smooth)
print Wx, iseed, kmap_rand.shape
np.save(bmap_fn(Wx, iseed), kmap_rand)
示例4: Bmode
# 需要導入模塊: import WLanalysis [as 別名]
# 或者: from WLanalysis import weighted_smooth [as 別名]
def Bmode(iinput):
'''Input:
i = ith zbin for zcut
hl = 'hi' or 'lo' for higher/lower z of the zcut
sigmaG: smoothing scale
Wx = 1..4 of the field
Output:
smoothed KS map and galn map.
'''
Wx, sigmaG, i, hl = iinput
print 'Bmode - Wx, sigmaG, i, hl:', Wx, sigmaG, i, hl
bmap_fn = cat_dir+'KS/W%i_Bmode_%s_%s_sigmaG%02d.fit'%(Wx, zbins[i],hl,sigmaG*10)
#galn_smooth_fn = cat_dir+'KS/W%i_galn_%s_%s_sigmaG%02d.fit'%(Wx, zbins[i],hl,sigmaG*10)
isfile_kmap, bmap = WLanalysis.TestFitsComplete(bmap_fn, return_file = True)
if isfile_kmap == False:
Me1_fn = cat_dir+'Me_Mw_galn/W%i_Me1w_%s_%s.fit'%(Wx, zbins[i],hl)
Me2_fn = cat_dir+'Me_Mw_galn/W%i_Me2w_%s_%s.fit'%(Wx, zbins[i],hl)
Mw_fn = cat_dir+'Me_Mw_galn/W%i_Mwm_%s_%s.fit'%(Wx, zbins[i],hl)
Me1 = WLanalysis.readFits(Me1_fn)
Me2 = WLanalysis.readFits(Me2_fn)
Mw = WLanalysis.readFits(Mw_fn)
Me1_smooth = WLanalysis.weighted_smooth(Me1, Mw, PPA=PPA512, sigmaG=sigmaG)
Me2_smooth = WLanalysis.weighted_smooth(Me2, Mw, PPA=PPA512, sigmaG=sigmaG)
### Bmode conversion is equivalent to
### gamma1 -> gamma1' = -gamma2
### gamma2 -> gamma2' = gamma1
bmap = WLanalysis.KSvw(-Me2_smooth, Me1_smooth)
WLanalysis.writeFits(bmap,bmap_fn)
示例5: KSmap
# 需要導入模塊: import WLanalysis [as 別名]
# 或者: from WLanalysis import weighted_smooth [as 別名]
def KSmap (i):
'''
Smooth and KS inversion
input: i = 1, 2, 3 ... 13
output: nothing, write kmap, Mmask if haven't done so
'''
Me1, Me2, Mw, galn = fileGen(i)
for sigmaG in sigmaG_arr:
print 'KSmap i, sigmaG', i, sigmaG
KS_fn = KS_dir+'CFHT_KS_sigma%02d_subfield%02d.fits'%(sigmaG*10,i)
mask_fn = '/scratch/02977/jialiu/KSsim/mask/CFHT_mask_ngal%i_sigma%02d_subfield%02d.fits'%(ngal_arcmin,sigmaG*10,i)
if WLanalysis.TestComplete((KS_fn,mask_fn),rm=True):
kmap = WLanalysis.readFits(KS_fn)
Mmask = WLanalysis.readFits(mask_fn)
else:
Me1_smooth = WLanalysis.weighted_smooth(Me1, Mw, PPA=PPA512, sigmaG=sigmaG)
Me2_smooth = WLanalysis.weighted_smooth(Me2, Mw, PPA=PPA512, sigmaG=sigmaG)
galn_smooth = snd.filters.gaussian_filter(galn.astype(float),sigmaG*PPA512, mode='constant')
## KS
kmap = WLanalysis.KSvw(Me1_smooth, Me2_smooth)
## mask
maskidx = where(galn_smooth < ngal_cut) #cut at ngal=5
Mmask = ones(shape=galn.shape)
Mmask[maskidx]=0
WLanalysis.writeFits(kmap, KS_fn)
WLanalysis.writeFits(Mmask, mask_fn)
示例6: randmap
# 需要導入模塊: import WLanalysis [as 別名]
# 或者: from WLanalysis import weighted_smooth [as 別名]
def randmap (iseedWx):
iseed, Wx = iseedWx
Me1, Me2 = Me1_arr[Wx-1], Me2_arr[Wx-1]
Mwm = Mwm_arr[Wx-1]
Me1rnd, Me2rnd = WLanalysis.rndrot(Me1, Me2, iseed=iseed)
Me1smooth = WLanalysis.weighted_smooth(Me1rnd, Mwm)
Me2smooth = WLanalysis.weighted_smooth(Me2rnd, Mwm)
kmap_rand = WLanalysis.KSvw(Me1smooth, Me2smooth)
print Wx, iseed, kmap_rand.shape
np.save(bmap_fn(Wx, iseed), kmap_rand)
示例7: kmapPk_1sim
# 需要導入模塊: import WLanalysis [as 別名]
# 或者: from WLanalysis import weighted_smooth [as 別名]
def kmapPk_1sim (r):
print r,'1sim'
k, s1, s2 = kappaGen_1sim(r)[:3]
A, galn = WLanalysis.coords2grid(x, y, array([s1,s2]))
Ms1,Ms2 = A
s1_smooth = WLanalysis.weighted_smooth(Ms1, galn, PPA=PPA512, sigmaG=sigmaG)
s2_smooth = WLanalysis.weighted_smooth(Ms1, galn, PPA=PPA512, sigmaG=sigmaG)
kmap = WLanalysis.KSvw(s1_smooth, s2_smooth)
pk = WLanalysis.peaks_mask_hist(kmap, mask, bins=25, kmin = -0.04, kmax = 0.12)
return pk
示例8: kmapPs
# 需要導入模塊: import WLanalysis [as 別名]
# 或者: from WLanalysis import weighted_smooth [as 別名]
def kmapPs (r):
print r
k, s1, s2 = kappaGen(r)[:3]
A, galn = WLanalysis.coords2grid(x, y, array([s1,s2 ]))
Ms1,Ms2 = A
s1_smooth = WLanalysis.weighted_smooth(Ms1, galn, PPA=PPA512, sigmaG=sigmaG)
s2_smooth = WLanalysis.weighted_smooth(Ms1, galn, PPA=PPA512, sigmaG=sigmaG)
kmap = WLanalysis.KSvw(s1_smooth, s2_smooth)
kmap*=mask
ps = WLanalysis.PowerSpectrum(kmap,sizedeg=12.0)[-1]
return ps
示例9: KSmap_single
# 需要導入模塊: import WLanalysis [as 別名]
# 或者: from WLanalysis import weighted_smooth [as 別名]
def KSmap_single(i, R, cosmo, sigmaG):
'''Input:
i: subfield range from (1, 2..13)
R: realization range from (1..1000)
cosmo: one of the 1000 cosmos
sigmaG: smoothing scale
Return:
KS inverted map
'''
KS_fn = KSfn(i, cosmo, R, sigmaG)
if not os.path.isfile(KS_fn):
Me1, Me2 = fileGen(i, R, cosmo)
#Mw = Mw_fcn(i)
Me1_smooth = WLanalysis.weighted_smooth(Me1, Mw, PPA=PPA512, sigmaG=sigmaG)
Me2_smooth = WLanalysis.weighted_smooth(Me2, Mw, PPA=PPA512, sigmaG=sigmaG)
kmap = WLanalysis.KSvw(Me1_smooth, Me2_smooth)
np.save(KS_fn, kmap)
return kmap
示例10: Noise
# 需要導入模塊: import WLanalysis [as 別名]
# 或者: from WLanalysis import weighted_smooth [as 別名]
def Noise(iinput):
'''Input: (Wx, iseed)
Return: files of noise KS map, using randomly rotated galaxy.
'''
Wx, iseed = iinput
seed(iseed)
print 'Bmode - Wx, iseed:', Wx, iseed
bmap_fn = cat_dir+'Noise/W%i/W%i_Noise_sigmaG10_%04d.fit'%(Wx, Wx, iseed)
isfile_kmap, bmap = WLanalysis.TestFitsComplete(bmap_fn, return_file = True)
if isfile_kmap == False:
Me1_fn = cat_dir+'Me_Mw_galn/W%i_Me1w_1.3_lo.fit'%(Wx)
Me2_fn = cat_dir+'Me_Mw_galn/W%i_Me2w_1.3_lo.fit'%(Wx)
Mw_fn = cat_dir+'Me_Mw_galn/W%i_Mwm_1.3_lo.fit'%(Wx)
Me1_init = WLanalysis.readFits(Me1_fn)
Me2_init = WLanalysis.readFits(Me2_fn)
#### randomly rotate Me1, Me2 ###
Me1, Me2 = WLanalysis.rndrot(Me1_init, Me2_init)
#################################
Mw = WLanalysis.readFits(Mw_fn)
Me1_smooth = WLanalysis.weighted_smooth(Me1, Mw, PPA=PPA512, sigmaG=sigmaG)
Me2_smooth = WLanalysis.weighted_smooth(Me2, Mw, PPA=PPA512, sigmaG=sigmaG)
bmap = WLanalysis.KSvw(Me1_smooth, Me2_smooth)
WLanalysis.writeFits(bmap,bmap_fn)
示例11: array
# 需要導入模塊: import WLanalysis [as 別名]
# 或者: from WLanalysis import weighted_smooth [as 別名]
for sG in sG_arr:
KS_45_fn = test_dir+'KS_45_%i_%i.fit'%(i,sG)
KS_rand_fn = test_dir+'KS_rand_%i_%i.fit'%(i,sG)
print i, sG
if os.path.isfile(KS_45_fn) and os.path.isfile(KS_rand_fn):
KS_45=WLanalysis.readFits(KS_45_fn)
KS_rand=WLanalysis.readFits(KS_rand_fn)
else:
print 'generating KS'
y, x, e1, e2, w = WLanalysis.readFits(test_dir+'yxew_subfield%i_zcut0213.fit'%(i)).T
e1_45, e2_45 = WLanalysis.rndrot(e1, e2, deg=45)
e1_rand, e2_rand = WLanalysis.rndrot(e1, e2, iseed=0)
mat_e1_45,mat_e2_45,mat_e1_rand,mat_e2_rand, Mw = WLanalysis.coords2grid(x, y, array([e1_45*w, e2_45*w, e1_rand*w, e2_rand*w, w]) )[0]
mat_e1_45_smoothed = WLanalysis.weighted_smooth(mat_e1_45 , Mw, sigmaG=sG)
mat_e2_45_smoothed = WLanalysis.weighted_smooth(mat_e2_45 , Mw, sigmaG=sG)
mat_e1_rand_smoothed= WLanalysis.weighted_smooth(mat_e1_rand, Mw, sigmaG=sG)
mat_e2_rand_smoothed= WLanalysis.weighted_smooth(mat_e2_rand, Mw, sigmaG=sG)
KS_45 =WLanalysis.KSvw(mat_e1_45_smoothed,mat_e2_45_smoothed)
KS_rand=WLanalysis.KSvw(mat_e1_rand_smoothed,mat_e2_rand_smoothed)
WLanalysis.writeFits(KS_45,KS_45_fn)
WLanalysis.writeFits(KS_rand,KS_rand_fn)
kappa_45 = KS_45.flatten()
std_45=std(kappa_45)
#hist_45,binedges45 = histogram(kappa_45,bins=100,range=(-5*std_45,5*std_45))
#savetxt(test_dir+'hist45_%i_%i.ls'%(i,sG),array([hist_45,binedges45[:-1]]).T)
示例12: array
# 需要導入模塊: import WLanalysis [as 別名]
# 或者: from WLanalysis import weighted_smooth [as 別名]
#####################################
f_Wx = WLanalysis.gnom_fun(center)
y, x = array(f_Wx(icat[:2]))
weight = icat[3]
#k = np.load(obsPK_dir+'kappa_predict_W%i.npy'%(Wx))#kappa_predict_Mmax2e15_W%i.npy
A, galn = WLanalysis.coords2grid(x, y, array([k*weight, weight, k]), size=isize)
Mkw, Mw, Mk = A
###########################################
for sigmaG in (0.5, 1.0, 1.8, 3.5, 5.3, 8.9):
print Wx, sigmaG
mask0 = maskGen(Wx, 0.5, sigmaG)
mask = WLanalysis.smooth(mask0, 5.0)
################ make maps ######################
kmap_predict = WLanalysis.weighted_smooth(Mkw, Mw, PPA=PPA512, sigmaG=sigmaG)
kmap_predict*=mask
np.save(obsPK_dir+'maps/kmap_W%i_predict_sigmaG%02d.npy'%(Wx, sigmaG*10), kmap_predict)
###########################################
if plot_predict_maps:
def plot_predict_maps_fcn(WxsigmaG):
Wx, sigmaG = WxsigmaG
mask0 = maskGen(Wx, 0.5, sigmaG)
mask = WLanalysis.smooth(mask0, 5.0)
kmap_lensing = kmap_lensing_Gen(Wx, sigmaG)
kmap_predict = kmap_predict_Gen(Wx, sigmaG)
bmode_lensing= bmode_lensing_Gen(Wx, sigmaG)
mask_nan = mask0.copy()
mask_nan[mask0==0]=nan
示例13: ps
# 需要導入模塊: import WLanalysis [as 別名]
# 或者: from WLanalysis import weighted_smooth [as 別名]
def ps (R):
Mk = WLanalysis.readFits(Mk_fn(i, cosmo, R))
galn = WLanalysis.readFits(galn_fn(i))
Mk_smooth = WLanalysis.weighted_smooth(Mk, galn, sigmaG)
ps = WLanalysis.PowerSpectrum(Mk_smooth)
return ps[1]
示例14: eobs_fun
# 需要導入模塊: import WLanalysis [as 別名]
# 或者: from WLanalysis import weighted_smooth [as 別名]
s2 = s2o*(1+m)
eint1, eint2 = WLanalysis.rndrot(e1, e2, iseed=1000)
eint1_45, eint2_45 = WLanalysis.rndrot(e1, e2, iseed=1000,deg=45.0)
e1_reduce, e2_reduce = eobs_fun(s1, s2, kappa, eint1, eint2)
e1_add, e2_add = s1+eint1, s2+eint2
A, galn = WLanalysis.coords2grid(x, y, array([e1_reduce*w, e2_reduce*w, w*(1+m), s1o, s2o, kappa, e1_add*w, e2_add*w, s1+znoise1, s2+znoise2, kappa+znoise1]))
#Mk, Ms1, Ms2 = A
Me1, Me2, Mw, Ms1, Ms2, Mk, Me1add, Me2add, Ms1n, Ms2n, Mkn = A
B, galn = WLanalysis.coords2grid(x, y, array([znoise1, eint1, eint2, eint1_45, eint2_45, znoise27]))
Mn, Men1, Men2, Men1b, Men2b, Mn27 = B
### pure analytical noise ######
Mn_smooth = WLanalysis.weighted_smooth(Mn, galn, sigmaG=0.5)
Mn27_smooth = WLanalysis.weighted_smooth(Mn27, galn, sigmaG=0.5)
Men1_smooth = WLanalysis.weighted_smooth(Men1, galn, sigmaG=0.5)
Men2_smooth = WLanalysis.weighted_smooth(Men2, galn, sigmaG=0.5)
Men1b_smooth = WLanalysis.weighted_smooth(Men1b, galn, sigmaG=0.5)
Men2b_smooth = WLanalysis.weighted_smooth(Men2b, galn, sigmaG=0.5)
Nmap = WLanalysis.KSvw(Men1_smooth, Men2_smooth)
Nmap45 = WLanalysis.KSvw(Men1b_smooth, Men2b_smooth)
ps_nconv27 = WLanalysis.PowerSpectrum(Mn27_smooth)[-1]
ps_nconv = WLanalysis.PowerSpectrum(Mn_smooth)[-1]
ps_nrand = WLanalysis.PowerSpectrum(Nmap)[-1]
ps_n45 = WLanalysis.PowerSpectrum(Nmap45)[-1]
loglog(ell_arr, ps_nconv27, '.',label='Conv pure noise rms=0.29')
loglog(ell_arr, ps_nconv, '.', label='Conv pure noise rms=0.15+0.035z')