本文整理匯總了Python中Pgplot.plotxy方法的典型用法代碼示例。如果您正苦於以下問題:Python Pgplot.plotxy方法的具體用法?Python Pgplot.plotxy怎麽用?Python Pgplot.plotxy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類Pgplot
的用法示例。
在下文中一共展示了Pgplot.plotxy方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_chi2_vs_sub
# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
def plot_chi2_vs_sub(self, device='/xwin'):
"""
plot_chi2_vs_sub(self, device='/xwin'):
Plot (and return) an array showing the reduced-chi^2 versus
the subband number.
"""
# Sum the profiles in each subband
profs = self.profs.sum(0)
# Compute the averages and variances for the subbands
avgs = profs.sum(1)/self.proflen
vars = []
for sub in range(self.nsub):
var = 0.0
if sub in self.killed_subbands:
vars.append(var)
continue
for part in range(self.npart):
if part in self.killed_intervals:
continue
var += self.stats[part][sub][5] # foldstats prof_var
vars.append(var)
chis = Num.zeros(self.nsub, dtype='f')
for ii in range(self.nsub):
chis[ii] = self.calc_redchi2(prof=profs[ii], avg=avgs[ii], var=vars[ii])
# Now plot it
Pgplot.plotxy(chis, labx="Subband Number", laby="Reduced-\gx\u2\d",
rangey=[0.0, max(chis)*1.1], device=device)
return chis
示例2: kuiper_uniform_test
# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
def kuiper_uniform_test(data, output=0):
"""
kuiper_uniform_test(data, output=0):
Conduct a Kuiper test on the data. The data must be values
within [0,1) (e.g. phases from a periodicity search). They
will be compared to a uniform distribution. The return value
is the probability that the data is uniformly distributed.
"""
sdata = num.asarray(data)
N = sdata.size
sdata.sort()
f0 = num.arange(N, dtype=num.float64)/N
fn = (num.arange(N, dtype=num.float64)+1.0)/N
Dp = (fn - sdata).max()
Dm = (sdata - f0).max()
D = Dp + Dm
P = kuiper_prob(D, N)
if (output):
xs = (num.arange(N+3, dtype=num.float64)/(N+2.0)).repeat(2)[1:-1]
ys = num.concatenate((num.asarray([0.0]), sdata, num.asarray([1.0]))).repeat(2)
Pgplot.plotxy(ys, xs, rangex=[-0.03, 1.03], rangey=[-0.03, 1.03], aspect=1.0,
labx="Fraction of Data", laby="Cumulative Value", width=2)
Pgplot.plotxy(num.asarray([0.0, 1.0]), num.asarray([0.0, 1.0]), width=1)
Pgplot.closeplot()
print("Max distance between the cumulative distributions (D) = %.5g" % D)
print("Prob the data is from the specified distrbution (P) = %.3g" % P)
return (D, P)
示例3: estimate_rz
# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
def estimate_rz(psr, T, show=0, device='/XWIN'):
"""
estimate_rz(psr, T, show=0, device='/XWIN'):
Return estimates of a pulsar's average Fourier freq ('r')
relative to its nominal Fourier freq as well as its
Fourier f-dot ('z') in bins, of a pulsar.
'psr' is a psrparams structure describing the pulsar.
'T' is the length of the observation in sec.
'show' if true, displays plots of 'r' and 'z'.
'device' if the device to plot to if 'show' is true.
"""
startE = keplers_eqn(psr.orb.t, psr.orb.p, psr.orb.e, 1.0E-15)
numorbpts = int(T / psr.orb.p + 1.0) * 1024 + 1
dt = T / (numorbpts - 1)
E = dorbint(startE, numorbpts, dt, psr.orb)
z = z_from_e(E, psr, T)
r = T/p_from_e(E, psr) - T/psr.p
if show:
times = np.arange(numorbpts) * dt
Pgplot.plotxy(r, times, labx = 'Time', \
laby = 'Fourier Frequency (r)', device=device)
if device=='/XWIN':
print 'Press enter to continue:'
i = raw_input()
Pgplot.nextplotpage()
Pgplot.plotxy(z, times, labx = 'Time',
laby = 'Fourier Frequency Derivative (z)', device=device)
Pgplot.closeplot()
return r.mean(), z.mean()
示例4: plot_sumprof
# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
def plot_sumprof(self, device='/xwin'):
"""
plot_sumprof(self, device='/xwin'):
Plot the dedispersed and summed profile.
"""
if not self.__dict__.has_key('subdelays'):
print "Dedispersing first..."
self.dedisperse()
normprof = self.sumprof - min(self.sumprof)
normprof /= max(normprof)
Pgplot.plotxy(normprof, labx="Phase Bins", laby="Normalized Flux",
device=device)
示例5: plot_chi2_vs_DM
# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
def plot_chi2_vs_DM(self, loDM, hiDM, N=100, interp=0, device='/xwin'):
"""
plot_chi2_vs_DM(self, loDM, hiDM, N=100, interp=0, device='/xwin'):
Plot (and return) an array showing the reduced-chi^2 versus
DM (N DMs spanning loDM-hiDM). Use sinc_interpolation
if 'interp' is non-zero.
"""
# Sum the profiles in time
sumprofs = self.profs.sum(0)
if not interp:
profs = sumprofs
else:
profs = Num.zeros(Num.shape(sumprofs), dtype='d')
DMs = psr_utils.span(loDM, hiDM, N)
chis = Num.zeros(N, dtype='f')
subdelays_bins = self.subdelays_bins.copy()
for ii, DM in enumerate(DMs):
subdelays = psr_utils.delay_from_DM(DM, self.barysubfreqs)
hifreqdelay = subdelays[-1]
subdelays = subdelays - hifreqdelay
delaybins = subdelays*self.binspersec - subdelays_bins
if interp:
interp_factor = 16
for jj in range(self.nsub):
profs[jj] = psr_utils.interp_rotate(sumprofs[jj], delaybins[jj],
zoomfact=interp_factor)
# Note: Since the interpolation process slightly changes the values of the
# profs, we need to re-calculate the average profile value
avgprof = (profs/self.proflen).sum()
else:
new_subdelays_bins = Num.floor(delaybins+0.5)
for jj in range(self.nsub):
profs[jj] = psr_utils.rotate(profs[jj], int(new_subdelays_bins[jj]))
subdelays_bins += new_subdelays_bins
avgprof = self.avgprof
sumprof = profs.sum(0)
chis[ii] = self.calc_redchi2(prof=sumprof, avg=avgprof)
# Now plot it
Pgplot.plotxy(chis, DMs, labx="DM", laby="Reduced-\gx\u2\d", device=device)
return (chis, DMs)
示例6: zeros
# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
if tmpnumbins > numbins: numbins = tmpnumbins
# Powers averaged over orb.t as a function of orb.w
pwrs_w = zeros((orbsperpt[ctype], numbins), Float32)
for ct in range(orbsperpt[ctype]):
wb = ct * 180.0 / orbsperpt[ctype]
if debugout: print('wb = '+repr(wb))
psr = psrparams_from_list([pp, Pb, xb, ecc[ctype], wb, 0.0])
for i in range(numffts):
psr.orb.t = i * Tfft
tmppwrs = spectralpower(gen_bin_response(0.0, numbetween,
psr.p, Tfft,
psr.orb, numbins))
if debugout: print(' tb = '+repr(psr.orb.t)+' Max pow = '+\
repr(max(tmppwrs)))
if showplots:
Pgplot.plotxy(tmppwrs)
Pgplot.closeplot()
pwrs_w[ct] = pwrs_w[ct] + tmppwrs
if showsumplots:
Pgplot.plotxy(pwrs_w[ct], title='power(w) averaged over orb.t')
Pgplot.closeplot()
pwrs_w = pwrs_w / numffts
max_avg_pow = average(maximum.reduce(pwrs_w,1))
if showsumplots:
Pgplot.plotxy(add.reduce(pwrs_w), title='power(w) averaged over orb.t')
Pgplot.closeplot()
tim = clock() - stim
if debugout:
print('Time for this point was ',tim, ' s.')
file.write('%8.6f %10.5f %10d %13.9f\n' % \
(pp, Tfft, int(Tfft/dt), max_avg_pow))
示例7: modf
# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
wb, tp = 0.0, ct * Pb / orbsperpt[ctype]
else:
(orbf, orbi) = modf(ct / sqrt(orbsperpt[ctype]))
orbi = orbi / sqrt(orbsperpt[ctype])
wb, tp = orbf * 180.0, Pb * orbi
if debugout:
print 'T = '+`T`+' ppsr = '+`ppsr[y]`+\
' Pb = '+`Pb`+' xb = '+`xb`+' eb = '+\
`eb`+' wb = '+`wb`+' tp = '+`tp`
psr = psrparams_from_list([ppsr[y], Pb, xb, eb, wb, tp])
psr_numbins = 2 * bin_resp_halfwidth(psr.p, T, psr.orb)
psr_resp = gen_bin_response(0.0, 1, psr.p, T, psr.orb,
psr_numbins)
if showplots:
print "The raw response:"
Pgplot.plotxy(spectralpower(psr_resp))
Pgplot.closeplot()
# The following places the nominative psr freq
# approx in bin len(data)/2
datalen = next2_to_n(psr_numbins * 2)
if datalen < 1024: datalen = 1024
data = zeros(datalen, 'F')
lo = (len(data) - len(psr_resp)) / 2
hi = lo + len(psr_resp)
data[lo:hi] = array(psr_resp, copy=1)
(tryr, tryz) = estimate_rz(psr, T, show=showplots)
tryr = tryr + len(data) / 2.0
numr = 200
numz = 200
dr = 0.5
dz = 1.0
示例8: min
# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
template = sinc_interp.periodic_interp(template, numbins)[::oldlen]
else:
if gaussfitfile is not None:
template = psr_utils.read_gaussfitfile(gaussfitfile, numbins)
else:
template = psr_utils.gaussian_profile(numbins, 0.0, gaussianwidth)
# Normalize it
template -= min(template)
template /= max(template)
# Rotate it so that it becomes a "true" template according to FFTFIT
shift,eshift,snr,esnr,b,errb,ngood = measure_phase(template, template)
template = psr_utils.fft_rotate(template, shift)
# Determine the off-pulse bins
if bkgd_vals is not None:
Pgplot.plotxy(template, labx="Phase bins")
Pgplot.plotxy(template[bkgd_vals], Num.arange(numbins)[bkgd_vals],
line=None, symbol=2, color='red')
Pgplot.closeplot()
offpulse_inds = bkgd_vals
onpulse_inds = set(Num.arange(numbins)) - set(bkgd_vals)
else:
offpulse_inds = Num.compress(template<=bkgd_cutoff, Num.arange(numbins))
onpulse_inds = Num.compress(template>bkgd_cutoff, Num.arange(numbins))
Pgplot.plotxy(template)
Pgplot.plotxy([bkgd_cutoff, bkgd_cutoff], [0.0, numbins], color='red')
Pgplot.closeplot()
# If the number of bins in the offpulse section is < 10% of the total
# use the statistics in the .pfd file to set the RMS
if (len(offpulse_inds) < 0.1*numbins):
print "Number of off-pulse bins to use for RMS is too low. Using .pfd stats."
示例9: sqrt
# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
orbi = orbi / sqrt(orbsperpt[ctype])
wb, tp = orbf * 180.0, Pb * orbi
# Generate the PSR response
psr = psrparams_from_list([ppsr[y], Pb, xb, ecc[ctype], wb, tp])
psr_numbins = 2 * bin_resp_halfwidth(psr.p, T, psr.orb)
psr_resp = gen_bin_response(0.0, 1, psr.p, T, psr.orb,
psr_numbins)
if debugout:
print 'T = %9.3f Pb = %9.3f Ppsr = %9.7f' % \
(T, psr.orb.p, psr.p)
newpows = slice_resp(psr, T, spectralpower(psr_resp))
if showplots:
print "The raw response:"
Pgplot.plotxy(newpows)
Pgplot.closeplot()
fftlen = len(newpows)
noise = rng.sample(fftlen)
tryamp[ct] = 500.0
theo_sum_pow = powersum_at_sigma(detect_sigma,
int(T/psr.orb.p))
if debugout:
print 'theo_sum_pow = ', theo_sum_pow
newloop = 1
tryamp[ct] = secant(mini_fft_sum_pows, tryamp[ct]/2,
tryamp[ct], 0.01)
# Pgplot.plotxy(spectralpower(fdata)[1:]/norm, \
# arange(len(fdata))*T/fftlen, \
# labx='Orbital Period (s))', \
# laby='Power')
示例10: len
# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
presto.TWOPI*psr.orb.x/psr.p
print ''
# Create the data set
cand = presto.orbitparams()
m = 0
comb = presto.gen_bin_response(0.0, 1, psr.p, T, psr.orb ,
presto.LOWACC, m)
ind = len(comb)
# The follwoing is performed automatically in gen_bin_resp() now
# m = (ind / 2 + 10) * numbetween
data = Numeric.zeros(3 * ind, 'F')
data[ind:2*ind] = comb
if showplots and not parallel:
Pgplot.plotxy(presto.spectralpower(data), color='red',
title='Data', labx='Fourier Frequency',
laby='Relative Power')
a = raw_input("Press enter to continue...")
Pgplot.nextplotpage(1)
# Perform the loops over the Keplerian parameters
for job in range(numjobs):
if parallel:
myjob = work[myid]
else:
myjob = work[job]
if myjob=='p':
Dd = Dp
psrref = psr.orb.p
if myjob=='x':
Dd = Dx
示例11: modf
# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
wb, tp = 0.0, ct * Pb / orbsperpt[ctype]
else:
(orbf, orbi) = modf(ct / sqrt(orbsperpt[ctype]))
orbi = orbi / sqrt(orbsperpt[ctype])
wb, tp = orbf * 180.0, Pb * orbi
if debugout:
print('T = '+repr(T)+' ppsr = '+repr(ppsr[y])+\
' Pb = '+repr(Pb)+' xb = '+repr(xb)+' eb = '+\
repr(eb)+' wb = '+repr(wb)+' tp = '+repr(tp))
psr = psrparams_from_list([ppsr[y], Pb, xb, eb, wb, tp])
psr_numbins = 2 * bin_resp_halfwidth(psr.p, T, psr.orb)
psr_resp = gen_bin_response(0.0, 1, psr.p, T, psr.orb,
psr_numbins)
if showplots:
print("The raw response:")
Pgplot.plotxy(spectralpower(psr_resp))
Pgplot.closeplot()
if searchtype == 'ffdot':
# The following places the nominative psr freq
# approx in bin len(data)/2
datalen = next2_to_n(psr_numbins * 2)
if datalen < 1024: datalen = 1024
data = zeros(datalen, 'F')
lo = (len(data) - len(psr_resp)) / 2
hi = lo + len(psr_resp)
data[lo:hi] = array(psr_resp, copy=1)
(tryr, tryz) = estimate_rz(psr, T, show=showplots)
tryr = tryr + len(data) / 2.0
numr = 200
numz = 200
dr = 0.5