當前位置: 首頁>>代碼示例>>Python>>正文


Python Pgplot.plotxy方法代碼示例

本文整理匯總了Python中Pgplot.plotxy方法的典型用法代碼示例。如果您正苦於以下問題:Python Pgplot.plotxy方法的具體用法?Python Pgplot.plotxy怎麽用?Python Pgplot.plotxy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在Pgplot的用法示例。


在下文中一共展示了Pgplot.plotxy方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plot_chi2_vs_sub

# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
 def plot_chi2_vs_sub(self, device='/xwin'):
     """
     plot_chi2_vs_sub(self, device='/xwin'):
         Plot (and return) an array showing the reduced-chi^2 versus
             the subband number.
     """
     # Sum the profiles in each subband
     profs = self.profs.sum(0)
     # Compute the averages and variances for the subbands
     avgs = profs.sum(1)/self.proflen
     vars = []
     for sub in range(self.nsub):
         var = 0.0
         if sub in self.killed_subbands:
             vars.append(var)
             continue
         for part in range(self.npart):
             if part in self.killed_intervals:
                 continue
             var += self.stats[part][sub][5] # foldstats prof_var
         vars.append(var)
     chis = Num.zeros(self.nsub, dtype='f')
     for ii in range(self.nsub):
         chis[ii] = self.calc_redchi2(prof=profs[ii], avg=avgs[ii], var=vars[ii])
     # Now plot it
     Pgplot.plotxy(chis, labx="Subband Number", laby="Reduced-\gx\u2\d",
                   rangey=[0.0, max(chis)*1.1], device=device)
     return chis
開發者ID:zhuww,項目名稱:ubc_AI,代碼行數:30,代碼來源:prepfold.py

示例2: kuiper_uniform_test

# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
def kuiper_uniform_test(data, output=0):
    """
    kuiper_uniform_test(data, output=0):
       Conduct a Kuiper test on the data.  The data must be values
       within [0,1) (e.g. phases from a periodicity search).  They
       will be compared to a uniform distribution.  The return value
       is the probability that the data is uniformly distributed.
    """
    sdata = num.asarray(data)
    N = sdata.size
    sdata.sort()
    f0 = num.arange(N, dtype=num.float64)/N
    fn = (num.arange(N, dtype=num.float64)+1.0)/N
    Dp = (fn - sdata).max()
    Dm = (sdata - f0).max()
    D = Dp + Dm
    P = kuiper_prob(D, N)
    if (output):
        xs = (num.arange(N+3, dtype=num.float64)/(N+2.0)).repeat(2)[1:-1]
        ys = num.concatenate((num.asarray([0.0]), sdata, num.asarray([1.0]))).repeat(2)
        Pgplot.plotxy(ys, xs, rangex=[-0.03, 1.03], rangey=[-0.03, 1.03], aspect=1.0, 
                      labx="Fraction of Data", laby="Cumulative Value", width=2)
        Pgplot.plotxy(num.asarray([0.0, 1.0]), num.asarray([0.0, 1.0]), width=1)
        Pgplot.closeplot()
        print("Max distance between the cumulative distributions (D) = %.5g" % D)
        print("Prob the data is from the specified distrbution   (P) = %.3g" % P)
    return (D, P)
開發者ID:matteobachetti,項目名稱:presto,代碼行數:29,代碼來源:kuiper.py

示例3: estimate_rz

# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
def estimate_rz(psr, T, show=0, device='/XWIN'):
    """
    estimate_rz(psr, T, show=0, device='/XWIN'):
        Return estimates of a pulsar's average Fourier freq ('r')
        relative to its nominal Fourier freq as well as its
        Fourier f-dot ('z') in bins, of a pulsar.
           'psr' is a psrparams structure describing the pulsar.
           'T' is the length of the observation in sec.
           'show' if true, displays plots of 'r' and 'z'.
           'device' if the device to plot to if 'show' is true.
    """
    startE = keplers_eqn(psr.orb.t, psr.orb.p, psr.orb.e, 1.0E-15)
    numorbpts = int(T / psr.orb.p + 1.0) * 1024 + 1
    dt = T / (numorbpts - 1)
    E = dorbint(startE, numorbpts, dt, psr.orb)
    z = z_from_e(E, psr, T)
    r = T/p_from_e(E, psr) - T/psr.p
    if show:
        times = np.arange(numorbpts) * dt
        Pgplot.plotxy(r, times, labx = 'Time', \
                      laby = 'Fourier Frequency (r)', device=device)
        if device=='/XWIN':
            print 'Press enter to continue:'
            i = raw_input()
        Pgplot.nextplotpage()
        Pgplot.plotxy(z, times, labx = 'Time',
                      laby = 'Fourier Frequency Derivative (z)', device=device)
        Pgplot.closeplot()
    return r.mean(), z.mean()
開發者ID:kernsuite-debian,項目名稱:presto,代碼行數:31,代碼來源:__init__.py

示例4: plot_sumprof

# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
 def plot_sumprof(self, device='/xwin'):
     """
     plot_sumprof(self, device='/xwin'):
         Plot the dedispersed and summed profile.
     """
     if not self.__dict__.has_key('subdelays'):
         print "Dedispersing first..."
         self.dedisperse()
     normprof = self.sumprof - min(self.sumprof)
     normprof /= max(normprof)
     Pgplot.plotxy(normprof, labx="Phase Bins", laby="Normalized Flux",
                   device=device)
開發者ID:zhuww,項目名稱:ubc_AI,代碼行數:14,代碼來源:prepfold.py

示例5: plot_chi2_vs_DM

# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
 def plot_chi2_vs_DM(self, loDM, hiDM, N=100, interp=0, device='/xwin'):
     """
     plot_chi2_vs_DM(self, loDM, hiDM, N=100, interp=0, device='/xwin'):
         Plot (and return) an array showing the reduced-chi^2 versus
             DM (N DMs spanning loDM-hiDM).  Use sinc_interpolation
             if 'interp' is non-zero.
     """
     # Sum the profiles in time
     sumprofs = self.profs.sum(0)
     if not interp:
         profs = sumprofs
     else:
         profs = Num.zeros(Num.shape(sumprofs), dtype='d')
     DMs = psr_utils.span(loDM, hiDM, N)
     chis = Num.zeros(N, dtype='f')
     subdelays_bins = self.subdelays_bins.copy()
     for ii, DM in enumerate(DMs):
         subdelays = psr_utils.delay_from_DM(DM, self.barysubfreqs)
         hifreqdelay = subdelays[-1]
         subdelays = subdelays - hifreqdelay
         delaybins = subdelays*self.binspersec - subdelays_bins
         if interp:
             interp_factor = 16
             for jj in range(self.nsub):
                 profs[jj] = psr_utils.interp_rotate(sumprofs[jj], delaybins[jj],
                                                     zoomfact=interp_factor)
             # Note: Since the interpolation process slightly changes the values of the
             # profs, we need to re-calculate the average profile value
             avgprof = (profs/self.proflen).sum()
         else:
             new_subdelays_bins = Num.floor(delaybins+0.5)
             for jj in range(self.nsub):
                 profs[jj] = psr_utils.rotate(profs[jj], int(new_subdelays_bins[jj]))
             subdelays_bins += new_subdelays_bins
             avgprof = self.avgprof
         sumprof = profs.sum(0)
         chis[ii] = self.calc_redchi2(prof=sumprof, avg=avgprof)
     # Now plot it
     Pgplot.plotxy(chis, DMs, labx="DM", laby="Reduced-\gx\u2\d", device=device)
     return (chis, DMs)
開發者ID:zhuww,項目名稱:ubc_AI,代碼行數:42,代碼來源:prepfold.py

示例6: zeros

# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
     if tmpnumbins > numbins:  numbins = tmpnumbins
 # Powers averaged over orb.t as a function of orb.w
 pwrs_w = zeros((orbsperpt[ctype], numbins), Float32)
 for ct in range(orbsperpt[ctype]):
     wb = ct * 180.0 / orbsperpt[ctype]
     if debugout:  print('wb = '+repr(wb))
     psr = psrparams_from_list([pp, Pb, xb, ecc[ctype], wb, 0.0])
     for i in range(numffts):
         psr.orb.t = i * Tfft
         tmppwrs = spectralpower(gen_bin_response(0.0, numbetween,
                                                  psr.p, Tfft,
                                                  psr.orb, numbins))
         if debugout:  print('     tb = '+repr(psr.orb.t)+'  Max pow = '+\
            repr(max(tmppwrs)))
         if showplots:
             Pgplot.plotxy(tmppwrs)
             Pgplot.closeplot()
         pwrs_w[ct] = pwrs_w[ct] + tmppwrs
     if showsumplots:
         Pgplot.plotxy(pwrs_w[ct], title='power(w) averaged over orb.t')
         Pgplot.closeplot()
 pwrs_w = pwrs_w / numffts
 max_avg_pow = average(maximum.reduce(pwrs_w,1))
 if showsumplots:
     Pgplot.plotxy(add.reduce(pwrs_w), title='power(w) averaged over orb.t')
     Pgplot.closeplot()
 tim = clock() - stim
 if debugout:
     print('Time for this point was ',tim, ' s.')
 file.write('%8.6f  %10.5f  %10d  %13.9f\n' % \
            (pp, Tfft, int(Tfft/dt), max_avg_pow))
開發者ID:matteobachetti,項目名稱:presto,代碼行數:33,代碼來源:monte_short.py

示例7: modf

# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
     wb, tp = 0.0, ct * Pb / orbsperpt[ctype]
 else:
     (orbf, orbi)  = modf(ct / sqrt(orbsperpt[ctype]))
     orbi = orbi / sqrt(orbsperpt[ctype])
     wb, tp = orbf * 180.0, Pb * orbi
 if debugout:
     print 'T = '+`T`+'  ppsr = '+`ppsr[y]`+\
           ' Pb = '+`Pb`+' xb = '+`xb`+' eb = '+\
           `eb`+' wb = '+`wb`+' tp = '+`tp`
 psr = psrparams_from_list([ppsr[y], Pb, xb, eb, wb, tp])
 psr_numbins = 2 * bin_resp_halfwidth(psr.p, T, psr.orb)
 psr_resp = gen_bin_response(0.0, 1, psr.p, T, psr.orb,
                             psr_numbins)
 if showplots:
     print "The raw response:"
     Pgplot.plotxy(spectralpower(psr_resp))
     Pgplot.closeplot()
 # The following places the nominative psr freq
 # approx in bin len(data)/2
 datalen = next2_to_n(psr_numbins * 2)
 if datalen < 1024: datalen = 1024
 data = zeros(datalen, 'F')
 lo = (len(data) - len(psr_resp)) / 2
 hi = lo + len(psr_resp)
 data[lo:hi] = array(psr_resp, copy=1)
 (tryr, tryz) = estimate_rz(psr, T, show=showplots)
 tryr = tryr + len(data) / 2.0
 numr = 200
 numz = 200
 dr = 0.5
 dz = 1.0
開發者ID:ChrisLaidler,項目名稱:presto,代碼行數:33,代碼來源:monte_ffdot.py

示例8: min

# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
         template = sinc_interp.periodic_interp(template, numbins)[::oldlen]
 else:
     if gaussfitfile is not None:
         template = psr_utils.read_gaussfitfile(gaussfitfile, numbins)
     else:
         template = psr_utils.gaussian_profile(numbins, 0.0, gaussianwidth)
 # Normalize it
 template -= min(template)
 template /= max(template)
 # Rotate it so that it becomes a "true" template according to FFTFIT
 shift,eshift,snr,esnr,b,errb,ngood = measure_phase(template, template)
 template = psr_utils.fft_rotate(template, shift)
     
 # Determine the off-pulse bins
 if bkgd_vals is not None:
     Pgplot.plotxy(template, labx="Phase bins")
     Pgplot.plotxy(template[bkgd_vals], Num.arange(numbins)[bkgd_vals],
                   line=None, symbol=2, color='red')
     Pgplot.closeplot()
     offpulse_inds = bkgd_vals
     onpulse_inds = set(Num.arange(numbins)) - set(bkgd_vals)
 else:
     offpulse_inds = Num.compress(template<=bkgd_cutoff, Num.arange(numbins))
     onpulse_inds = Num.compress(template>bkgd_cutoff, Num.arange(numbins))
     Pgplot.plotxy(template)
     Pgplot.plotxy([bkgd_cutoff, bkgd_cutoff], [0.0, numbins], color='red')
     Pgplot.closeplot()
 # If the number of bins in the offpulse section is < 10% of the total
 # use the statistics in the .pfd file to set the RMS
 if (len(offpulse_inds) < 0.1*numbins):
     print "Number of off-pulse bins to use for RMS is too low.  Using .pfd stats."
開發者ID:ariofrio,項目名稱:presto,代碼行數:33,代碼來源:sum_profiles.py

示例9: sqrt

# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
                    orbi = orbi / sqrt(orbsperpt[ctype])
                    wb, tp = orbf * 180.0, Pb * orbi

                # Generate the PSR response
                psr = psrparams_from_list([ppsr[y], Pb, xb, ecc[ctype], wb, tp])
                psr_numbins = 2 * bin_resp_halfwidth(psr.p, T, psr.orb)
                psr_resp = gen_bin_response(0.0, 1, psr.p, T, psr.orb,
                                            psr_numbins)
                if debugout:
                    print 'T = %9.3f  Pb = %9.3f  Ppsr = %9.7f' % \
                          (T, psr.orb.p, psr.p)

                newpows = slice_resp(psr, T, spectralpower(psr_resp))
                if showplots:
                    print "The raw response:"
                    Pgplot.plotxy(newpows)
                    Pgplot.closeplot()
                fftlen = len(newpows)
                noise = rng.sample(fftlen)
                tryamp[ct] = 500.0
                theo_sum_pow = powersum_at_sigma(detect_sigma,
                                                 int(T/psr.orb.p))
                if debugout:
                    print 'theo_sum_pow = ', theo_sum_pow
                newloop = 1
                tryamp[ct] = secant(mini_fft_sum_pows, tryamp[ct]/2,
                                    tryamp[ct], 0.01)
                # Pgplot.plotxy(spectralpower(fdata)[1:]/norm, \
                #              arange(len(fdata))*T/fftlen, \
                #              labx='Orbital Period (s))', \
                #              laby='Power')
開發者ID:ChrisLaidler,項目名稱:presto,代碼行數:33,代碼來源:monte_sideb.py

示例10: len

# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
           presto.TWOPI*psr.orb.x/psr.p
     print ''
         
 # Create the data set
 cand = presto.orbitparams()
 m = 0
 comb = presto.gen_bin_response(0.0, 1, psr.p, T, psr.orb , 
                                presto.LOWACC, m)
 ind = len(comb)
 # The follwoing is performed automatically in gen_bin_resp() now
 # m = (ind / 2 + 10) * numbetween
 data = Numeric.zeros(3 * ind, 'F')
 data[ind:2*ind] = comb
 if showplots and not parallel:
     Pgplot.plotxy(presto.spectralpower(data), color='red',
                   title='Data', labx='Fourier Frequency',
                   laby='Relative Power')
     a = raw_input("Press enter to continue...")
     Pgplot.nextplotpage(1)
     
 # Perform the loops over the Keplerian parameters
 for job in range(numjobs):
     if parallel:
         myjob = work[myid]
     else:
         myjob = work[job]
     if myjob=='p':
         Dd = Dp
         psrref = psr.orb.p
     if myjob=='x':
         Dd = Dx
開發者ID:MilesCranmer,項目名稱:presto,代碼行數:33,代碼來源:montebinopt.py

示例11: modf

# 需要導入模塊: import Pgplot [as 別名]
# 或者: from Pgplot import plotxy [as 別名]
     wb, tp = 0.0, ct * Pb / orbsperpt[ctype]
 else:
     (orbf, orbi)  = modf(ct / sqrt(orbsperpt[ctype]))
     orbi = orbi / sqrt(orbsperpt[ctype])
     wb, tp = orbf * 180.0, Pb * orbi
 if debugout:
     print('T = '+repr(T)+'  ppsr = '+repr(ppsr[y])+\
           ' Pb = '+repr(Pb)+' xb = '+repr(xb)+' eb = '+\
           repr(eb)+' wb = '+repr(wb)+' tp = '+repr(tp))
 psr = psrparams_from_list([ppsr[y], Pb, xb, eb, wb, tp])
 psr_numbins = 2 * bin_resp_halfwidth(psr.p, T, psr.orb)
 psr_resp = gen_bin_response(0.0, 1, psr.p, T, psr.orb,
                             psr_numbins)
 if showplots:
     print("The raw response:")
     Pgplot.plotxy(spectralpower(psr_resp))
     Pgplot.closeplot()
 if searchtype == 'ffdot':
     # The following places the nominative psr freq
     # approx in bin len(data)/2
     datalen = next2_to_n(psr_numbins * 2)
     if datalen < 1024: datalen = 1024
     data = zeros(datalen, 'F')
     lo = (len(data) - len(psr_resp)) / 2
     hi = lo + len(psr_resp)
     data[lo:hi] = array(psr_resp, copy=1)
     (tryr, tryz) = estimate_rz(psr, T, show=showplots)
     tryr = tryr + len(data) / 2.0
     numr = 200
     numz = 200
     dr = 0.5
開發者ID:matteobachetti,項目名稱:presto,代碼行數:33,代碼來源:montebinresp.py


注:本文中的Pgplot.plotxy方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。