本文整理匯總了Python中MA.average方法的典型用法代碼示例。如果您正苦於以下問題:Python MA.average方法的具體用法?Python MA.average怎麽用?Python MA.average使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類MA
的用法示例。
在下文中一共展示了MA.average方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _subSampleByAveraging
# 需要導入模塊: import MA [as 別名]
# 或者: from MA import average [as 別名]
def _subSampleByAveraging(self, var, timeVar, flagVar, samplingRate, flagsToUse):
"""
Returns a new variable which is 'var' sub-sampled by averaging
at the given samplingRate with data selected according to flagVar
including the flag values specified in flagsToUse (defaults are 0 and 1).
"""
maskedArray = self._getMaskedArray(var, flagVar, flagsToUse)
shape = var.shape
if shape[1] == 1:
newNumArray = MV.ravel(maskedArray)
newArrayMask = MV.ravel(maskedArray.mask())
newArray = MA.masked_array(newNumArray, mask=newArrayMask, fill_value=maskedArray.fill_value())
else:
newArray = Numeric.zeros(shape[0], "f")
for t0 in range(shape[0]):
# Set as missing if less than half are valid
t1Array = maskedArray[t0]
if samplingRate == 1:
# If half or more are good values then calculate the mean
if t1Array.count() >= (shape[1] / 2.0):
newArray[t0] = MA.average(t1Array)
# otherwise set as missing value
else:
newArray[t0] = maskedArray.fill_value()
else:
raise "Averaging for non 1Hz sampling rates not yet supported!"
# Now re-construct variable axes etc
newTimeAxis = self._flatten2DTimeAxis(timeVar, samplingRate)
newVar = self._recreateVariable(
var,
newArray,
newTimeAxis,
flagVar,
max(flagsToUse),
missingValue=maskedArray.fill_value(),
sampleBy="averaging",
)
return newVar
示例2: processRainfall
# 需要導入模塊: import MA [as 別名]
# 或者: from MA import average [as 別名]
def processRainfall(file, outdir, var, north, west, south, east):
"Subsets, averages, writes to binary files."
f=cdms.open(file)
v=f(var, lat=(south, north), lon=(west, east))
timevalues=v.getTime()[:]
t0=timevalues[0]
# I need to test if step 0 always has only missing values
# remove -50 values???
v=MA.masked_less(v,0)
# create average of all ensemble members
av=MA.average(v, axis=1)
# get stuff for name
datetime=os.path.split(file)[-1].split(".")[1]
outpaths=[]
# now step through time dimension (0)
count=0
for dslice in av:
ts=timevalues[count]-t0
outfile="rainfall.%s.%dh.dat" % (datetime, ts)
outpath=os.path.join(outdir, outfile)
count=count+1
numarray=Numeric.array(dslice._data)
sh=numarray.shape
length=sh[0]*sh[1]
flatarray=Numeric.resize(numarray, [length])
output=open(outpath, "wb")
arr=array.array('f', flatarray)
arr.tofile(output)
output.close()
print "Written:", outpath
outpaths.append(outpath)
return outpaths
示例3:
# 需要導入模塊: import MA [as 別名]
# 或者: from MA import average [as 別名]
# How to use numpy with 'None' value in Python?
import MA
a = MA.array([1, 2, None], mask = [0, 0, 1])
print "average =", MA.average(a)
示例4: xrange
# 需要導入模塊: import MA [as 別名]
# 或者: from MA import average [as 別名]
hlat = ice1.variables["hlat"] # hlat[49]
hlon = ice1.variables["hlon"] # hlon[100]
dimf = fice.shape # Define an array to hold long-term monthly means.
ntime = fice.shape[0]
nhlat = fice.shape[1]
nhlon = fice.shape[2]
nmo = 0
month = nmo+1
icemon = MA.zeros((nhlat,nhlon),MA.Float0)
for i in xrange(fice_masked.shape[0]):
for j in xrange(fice_masked.shape[1]):
icemon[i,j] = MA.average(fice_masked[i,j,0:ntime:12])
#
# Fill the places where icemon is zero with the fill value.
#
icemon = MA.masked_values(icemon,0.,rtol=0.,atol=1.e-15)
icemon = MA.filled(icemon,value=fill_value)
# Calculate the January (nmo=0) average.
nsub = 16 # Subscript location of northernmost hlat to be plotted.
cmap = Numeric.array([ \
[1.00,1.00,1.00], [0.00,0.00,0.00], [1.00,1.00,0.50], \
[0.00,0.00,0.50], [0.50,1.00,1.00], [0.50,0.00,0.00], \