本文整理匯總了Python中Euler類的典型用法代碼示例。如果您正苦於以下問題:Python Euler類的具體用法?Python Euler怎麽用?Python Euler使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Euler類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: det_M
def det_M(seq):
div1 = set(Euler.factoring(seq[0]))
div2 = set(Euler.factoring(seq[1]))
check = div2.difference(div1)
if 3 in check or 7 in check:
return 1
else:
return -1
示例2: main
def main(limit):
# Returns the number of unique numbers below limit that are the sum of a
# prime square, prime cube, and prime fourth power.
fourth_powers = [x ** 4 for x in Euler.prime_sieve(int(limit ** (1/4.0) + 1))]
third_powers = [x ** 3 for x in Euler.prime_sieve(int(limit ** (1/3.0) + 1))]
second_powers = [x ** 2 for x in Euler.prime_sieve(int(limit ** (1/2.0) + 1))]
result = []
for x in fourth_powers:
for y in third_powers:
for z in second_powers:
if x+y+z < limit:
result.append(x+y+z)
return len(set(result))
示例3: main
def main(n):
# Returns the nth prime number.
counter = 0
testnum = 1
while counter < n:
testnum = Euler.nextPrime(testnum)
counter += 1
return testnum
示例4: permutePrimes
def permutePrimes(prime, character):
# Replaces each instance of character in prime with 0-9 and
# returns a list of each resulting number that is also prime
digits = [x for x in range(10)]
digits = list(filter(lambda x: x != character, digits))
answers = [prime]
for x in digits:
testnum = replaceDigit(prime, character, x)
if Euler.isPrime(testnum) == True:
if len(str(testnum)) == len(str(prime)):
answers.append(testnum)
return answers
示例5: main
def main(limit):
# Iterates through each number less than limit testing for primeness.
# Counter is multiplied by each prime number for the a number of times
# equal to the greatest number of times that prime divides a number less
# than or equal to the limit. For example, 2 divides 8 3 times (8 = 2*2*2),
# so when limit == 10 counter is multiplied by 2^3.
counter = 1
for x in range(2, limit+1):
if Euler.isPrime(x):
counter *= (x ** math.floor(math.log(limit, x)))
return counter
示例6: naiveResilience
def naiveResilience(num):
if(num==1): return 0/num
if(Euler.isPrime(num,Euler.currPrimes)): return (num-1)/num
count = 1
for i in range(2,num):
hit = False
b = math.sqrt(num)
for p in Euler.currPrimes:
if(p>b): break
if(i%p==0 and num%p==0):
hit = True
break
if(not hit): count+=1
return count/num
示例7: evaluate_prime
def evaluate_prime(prime):
# Evaluates a prime number and adds a key: value pair to prime_table
# with a list containing each set of pairs for that prime organized by
# number of pairs
candidate = Euler.previous_prime(prime)
answer = [] # This will be the value we return
finished = False
pairs = [prime]
while finished == False:
while candidate > 2:
if is_pair(prime, candidate) == True:
pairs.append(candidate)
candidate -= 2
if len(pairs) > 1:
answer.append((len(pairs), pairs))
candidate = Euler.previous_prime(pairs[-1])
pairs = pairs[:-1]
if len(pairs) < 2:
finished = True
if len(answer) == 0:
prime_table[prime] = False
else:
prime_table[prime] = answer
示例8: euler243
def euler243():
target = 15499/94744
currentD = 1
nextFactor = 2
currFactorIndex = 0
currR = 1
while(currR>=target):
print('Current index '+str(currFactorIndex))
print('Current D '+str(currentD))
currFactorIndex+=1
if(len(Euler.currPrimes)<=currFactorIndex):
Euler.currPrimes = Euler.primesList(nextFactor*2,Euler.currPrimes)
nextFactor = Euler.currPrimes[currFactorIndex]
currentD*=nextFactor
currR = naiveResilience(currentD)
print('D'+str(currentD))
print('R'+str(currR))
示例9: euler243Heuristic
def euler243Heuristic():
target = 15499/94744
currentD = 1
nextFactor = 2
currFactorIndex = 0
currR = 1
while(currR>=target or True):
currFactorIndex+=1
if(len(Euler.currPrimes)<=currFactorIndex):
Euler.currPrimes = Euler.primesList(nextFactor*2,Euler.currPrimes)
nextFactor = Euler.currPrimes[currFactorIndex]
currentD*=nextFactor
currR = pseudoResilience(currFactorIndex)
if(currR<target):
print('Pseudo hit on Index '+str(currFactorIndex))
print(currentD)
print(currR)
print('D'+str(currentD))
print('R'+str(currR))
示例10: tagainiso
def tagainiso(n, m):
re = list(set(Euler.factoring(n)) & set(Euler.factoring(m)))
if re == [1]:
re = []
return re
示例11: func
def func(x):
ans = list(set(Euler.factoring(x)))
ans.sort()
return ans
示例12: range
# Problem 69: totient maximum
import time, Euler
t1 = time.clock()
answer = 1
n = 0
for x in range(2, 10001):
rp_counter = 1
for y in range(2,x):
if Euler.highest_common_factor(x,y) == 1:
rp_counter += 1
ratio = x/rp_counter
if ratio > answer:
answer = ratio
n = x
print(n, " has the largest ratio: ", answer)
t2 = time.clock()
print("Execution time: ", str(t2-t1)[:5])
示例13: range
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
project euler problem 41
n桁の數がPandigitalであるとは, 1からnまでの數を各桁に1つずつもつことである.
例えば2143は4桁のPandigital數であり, かつ素數である.
n桁のPandigitalな素數の中で最大の數を答えよ.
"""
import Euler
import time
time1 = time.time()
answer = 0
for i in range(9999999, 1000000, -1):
if Euler.pandigital_check(i) * Euler.primecheck(i):
answer = i
break
if answer == 0:
for i in range(9999, 1000, -1):
if Euler.pandigital_check(i) * Euler.primecheck(i):
answer = i
break
print(answer)
print(time.time() - time1, "seconds")
示例14: Svenningsen
# Samuel Svenningsen (altock)
# Project Euler Problem 10
# import Euler_7
import Euler
if __name__ == '__main__':
# NOTE: Sieve was too slow
# erast = Euler_7.sieve()
# erast.get_ith_prime(145000)
# summation = sum(erast.list)
# while erast.get_highest() < 2000000:
# summation += erast.next()
# print summation - erast.get_highest()
summation = 2
for i in xrange(3, 2000000, 2):
if Euler.is_prime(i):
summation += i
print summation
示例15: int
渦巻きに新しい層を付け加えよう.
すると辺の長さが9の渦巻きが出來る.
以下, この操作を繰り返していく.
対角線上の素數の割合が10%未満に落ちる最初の辺の長さを求めよ.
"""
import time
import math
import Euler
time1 = time.time()
amount = 0
p_amount = 0
c = 0
add_count = 0
add_num = 2
i = 1
while True:
if amount != 0 and math.sqrt(i) % 1 == 0 and int(math.sqrt(i)) % 2 == 1:
if p_amount * 10 <= amount:
break
if add_count == 4:
add_count = 0
add_num += 2
i += add_num
add_count += 1
amount += 1
if Euler.primecheck(i):
p_amount += 1
print(math.sqrt(i), i)
print(time.time() - time1, "Seconds")