當前位置: 首頁>>代碼示例>>Python>>正文


Python vgg19.VGG19屬性代碼示例

本文整理匯總了Python中vgg19.VGG19屬性的典型用法代碼示例。如果您正苦於以下問題:Python vgg19.VGG19屬性的具體用法?Python vgg19.VGG19怎麽用?Python vgg19.VGG19使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在vgg19的用法示例。


在下文中一共展示了vgg19.VGG19屬性的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_vgg19

# 需要導入模塊: import vgg19 [as 別名]
# 或者: from vgg19 import VGG19 [as 別名]
def build_vgg19(self, x, reuse=None):
        with tf.variable_scope("vgg19", reuse=reuse):
            # image re-scaling
            x = tf.cast((x + 1) / 2, dtype=tf.float32)  # [-1, 1] to [0, 1]
            x = tf.cast(x * 255., dtype=tf.float32)     # [0, 1]  to [0, 255]

            r, g, b = tf.split(x, 3, 3)
            bgr = tf.concat([b - self.vgg_mean[0],
                             g - self.vgg_mean[1],
                             r - self.vgg_mean[2]], axis=3)

            self.vgg19 = vgg19.VGG19(bgr)

            net = self.vgg19.vgg19_net['conv5_4']

            return net  # last layer 
開發者ID:kozistr,項目名稱:Awesome-GANs,代碼行數:18,代碼來源:srgan_model.py

示例2: build_fcn

# 需要導入模塊: import vgg19 [as 別名]
# 或者: from vgg19 import VGG19 [as 別名]
def build_fcn(self):
        vgg19_net = vgg19.VGG19(image=self.x)

        net = vgg19_net.vgg19_net['pool5']

        net = t.conv2d(net, 4096, k=7, s=1, name='conv6_1')
        net = tf.nn.relu(net, name='relu6_1')
        net = tf.nn.dropout(net, self.do_rate, name='dropout-6_1')

        net = t.conv2d(net, 4096, k=1, s=1, name='conv7_1')
        net = tf.nn.relu(net, name='relu7_1')
        net = tf.nn.dropout(net, self.do_rate, name='dropout-7_1')

        feature = t.conv2d(net, self.n_classes, k=1, s=1, name='conv8_1')

        net = t.deconv2d(feature, vgg19_net.vgg19_net['pool4'].get_shape()[3], name='deconv_1')
        net = tf.add(net, vgg19_net.vgg19_net['pool4'], name='fuse_1') 
開發者ID:kozistr,項目名稱:Awesome-Segmentations,代碼行數:19,代碼來源:fcn_model.py

示例3: compute_VGG19_features

# 需要導入模塊: import vgg19 [as 別名]
# 或者: from vgg19 import VGG19 [as 別名]
def compute_VGG19_features(keras_model_path, size, batch_size=32):

    sys.path.append(keras_model_path)
    from vgg19 import VGG19
    from imagenet_utils import preprocess_input
    from keras.models import Model

    # Load data
    hdf5_file = os.path.join(data_dir, "lfw_%s_data.h5" % size)
    with h5py.File(hdf5_file, "a") as hf:

        X = hf["data"][:].astype(np.float32)
        X = preprocess_input(X)

        base_model = VGG19(weights='imagenet', include_top=False)
        list_output = ["block3_conv1", "block4_conv1", "block5_conv1"]
        list_output = [base_model.get_layer(l).output for l in list_output]

        model = Model(input=base_model.input, output=list_output)
        vgg19_feat = model.predict(X, batch_size=batch_size, verbose=True)
        for i in range(len(vgg19_feat)):
            hf.create_dataset("data_VGG_%s" % str(i), data=vgg19_feat[i]) 
開發者ID:tdeboissiere,項目名稱:DeepLearningImplementations,代碼行數:24,代碼來源:make_dataset.py

示例4: parse_args

# 需要導入模塊: import vgg19 [as 別名]
# 或者: from vgg19 import VGG19 [as 別名]
def parse_args():
    desc = "Tensorflow implementation of 'Image Style Transfer Using Convolutional Neural Networks"
    parser = argparse.ArgumentParser(description=desc)

    parser.add_argument('--vgg_model', type=str, default='pre_trained_model', help='The directory where the pre-trained model was saved', required=True)
    parser.add_argument('--trainDB_path', type=str, default='train2014',
                        help='The directory where MSCOCO DB was saved', required=True)
    parser.add_argument('--style', type=str, default='style/wave.jpg', help='File path of style image (notation in the paper : a)', required=True)
    parser.add_argument('--output', type=str, default='models', help='File path for trained-model. Train-log is also saved here.', required=True)
	
    parser.add_argument('--content_weight', type=float, default=7.5e0, help='Weight of content-loss')
    parser.add_argument('--style_weight', type=float, default=5e2, help='Weight of style-loss')
    parser.add_argument('--tv_weight', type=float, default=2e2, help='Weight of total-variance-loss')

    parser.add_argument('--content_layers', nargs='+', type=str, default=['relu4_2'], help='VGG19 layers used for content loss')
    parser.add_argument('--style_layers', nargs='+', type=str, default=['relu1_1', 'relu2_1', 'relu3_1', 'relu4_1', 'relu5_1'],
                        help='VGG19 layers used for style loss')

    parser.add_argument('--content_layer_weights', nargs='+', type=float, default=[1.0], help='Content loss for each content is multiplied by corresponding weight')
    parser.add_argument('--style_layer_weights', nargs='+', type=float, default=[.2,.2,.2,.2,.2],
                        help='Style loss for each content is multiplied by corresponding weight')

    parser.add_argument('--learn_rate', type=float, default=1e-3, help='Learning rate for Adam optimizer')
    parser.add_argument('--num_epochs', type=int, default=2, help='The number of epochs to run')
    parser.add_argument('--batch_size', type=int, default=4, help='Batch size')

    parser.add_argument('--checkpoint_every', type=int, default=1000, help='save a trained model every after this number of iterations')

    parser.add_argument('--test', type=str, default=None,
                        help='File path of content image (notation in the paper : x)')

    parser.add_argument('--max_size', type=int, default=None, help='The maximum width or height of input images')

    return check_args(parser.parse_args()) 
開發者ID:hwalsuklee,項目名稱:tensorflow-fast-style-transfer,代碼行數:36,代碼來源:run_train.py

示例5: build_vgg19

# 需要導入模塊: import vgg19 [as 別名]
# 或者: from vgg19 import VGG19 [as 別名]
def build_vgg19(self, x, reuse=None):
        with tf.variable_scope("vgg19", reuse=reuse):
            # image re-scaling
            x = tf.cast((x + 1) / 2, dtype=tf.float32)  # [-1, 1] to [0, 1]
            x = tf.cast(x * 255., dtype=tf.float32)     # [0, 1]  to [0, 255]

            r, g, b = tf.split(x, 3, 3)
            bgr = tf.concat([b - self.vgg_mean[0],
                             g - self.vgg_mean[1],
                             r - self.vgg_mean[2]], axis=3)

            self.vgg19 = vgg19.VGG19(bgr)

            net = self.vgg19.vgg19_net['conv3_3']
            return net 
開發者ID:kozistr,項目名稱:Awesome-GANs,代碼行數:17,代碼來源:deblurgan_model.py

示例6: main

# 需要導入模塊: import vgg19 [as 別名]
# 或者: from vgg19 import VGG19 [as 別名]
def main():

    # parse arguments
    args = parse_args()
    if args is None:
        exit()

    # initiate VGG19 model
    model_file_path = args.vgg_model + '/' + vgg19.MODEL_FILE_NAME
    vgg_net = vgg19.VGG19(model_file_path)

    # get file list for training
    content_images = utils.get_files(args.trainDB_path)

    # load style image
    style_image = utils.load_image(args.style)

    # create a map for content layers info
    CONTENT_LAYERS = {}
    for layer, weight in zip(args.content_layers,args.content_layer_weights):
        CONTENT_LAYERS[layer] = weight

    # create a map for style layers info
    STYLE_LAYERS = {}
    for layer, weight in zip(args.style_layers, args.style_layer_weights):
        STYLE_LAYERS[layer] = weight

    # open session
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))

    # build the graph for train
    trainer = style_transfer_trainer.StyleTransferTrainer(session=sess,
                                                          content_layer_ids=CONTENT_LAYERS,
                                                          style_layer_ids=STYLE_LAYERS,
                                                          content_images=content_images,
                                                          style_image=add_one_dim(style_image),
                                                          net=vgg_net,
                                                          num_epochs=args.num_epochs,
                                                          batch_size=args.batch_size,
                                                          content_weight=args.content_weight,
                                                          style_weight=args.style_weight,
                                                          tv_weight=args.tv_weight,
                                                          learn_rate=args.learn_rate,
                                                          save_path=args.output,
                                                          check_period=args.checkpoint_every,
                                                          test_image=args.test,
                                                          max_size=args.max_size,
                                                          )
    # launch the graph in a session
    trainer.train()

    # close session
    sess.close() 
開發者ID:hwalsuklee,項目名稱:tensorflow-fast-style-transfer,代碼行數:55,代碼來源:run_train.py


注:本文中的vgg19.VGG19屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。