當前位置: 首頁>>代碼示例>>Python>>正文


Python constants.UNIVARIATE_DATASET_NAMES屬性代碼示例

本文整理匯總了Python中utils.constants.UNIVARIATE_DATASET_NAMES屬性的典型用法代碼示例。如果您正苦於以下問題:Python constants.UNIVARIATE_DATASET_NAMES屬性的具體用法?Python constants.UNIVARIATE_DATASET_NAMES怎麽用?Python constants.UNIVARIATE_DATASET_NAMES使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在utils.constants的用法示例。


在下文中一共展示了constants.UNIVARIATE_DATASET_NAMES屬性的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: read_all_datasets

# 需要導入模塊: from utils import constants [as 別名]
# 或者: from utils.constants import UNIVARIATE_DATASET_NAMES [as 別名]
def read_all_datasets(root_dir,archive_name):
    datasets_dict = {}

    dataset_names_to_sort = []

    for dataset_name in DATASET_NAMES:
        root_dir_dataset =root_dir+'/archives/'+archive_name+'/'+dataset_name+'/'
        file_name = root_dir_dataset+dataset_name
        x_train, y_train = readucr(file_name+'_TRAIN')
        x_test, y_test = readucr(file_name+'_TEST')

        datasets_dict[dataset_name] = (x_train.copy(),y_train.copy(),x_test.copy(),
                y_test.copy())

        dataset_names_to_sort.append((dataset_name,len(x_train)))

    dataset_names_to_sort.sort(key=operator.itemgetter(1))

    for i in range(len(DATASET_NAMES)):
        DATASET_NAMES[i] = dataset_names_to_sort[i][0]

    return datasets_dict 
開發者ID:hfawaz,項目名稱:bigdata18,代碼行數:24,代碼來源:utils.py

示例2: read_all_datasets

# 需要導入模塊: from utils import constants [as 別名]
# 或者: from utils.constants import UNIVARIATE_DATASET_NAMES [as 別名]
def read_all_datasets(root_dir,archive_name, sort_dataset_name = False):
    datasets_dict = {}

    dataset_names_to_sort = []
    
    for dataset_name in DATASET_NAMES: 
        file_name = root_dir+archive_name+'/'+dataset_name+'/'+dataset_name
        x_train, y_train = readucr(file_name+'_TRAIN')
        x_test, y_test = readucr(file_name+'_TEST')
        datasets_dict[dataset_name] = (x_train.copy(),y_train.copy(),x_test.copy(),y_test.copy())
        dataset_names_to_sort.append((dataset_name,len(x_train)))
    
    item_getter = 1
    if sort_dataset_name == True: 
        item_getter = 0
    dataset_names_to_sort.sort(key=operator.itemgetter(item_getter))
    
    for i in range(len(DATASET_NAMES)):
        DATASET_NAMES[i] = dataset_names_to_sort[i][0]
    
    return datasets_dict 
開發者ID:hfawaz,項目名稱:aaltd18,代碼行數:23,代碼來源:utils.py

示例3: add_results_from_bake_off

# 需要導入模塊: from utils import constants [as 別名]
# 或者: from utils.constants import UNIVARIATE_DATASET_NAMES [as 別名]
def add_results_from_bake_off(df_res,df_res_bake_off,
    classifiers_to_add=['COTE','ST','BOSS','EE','PF','DTW_R1_1NN']):
    df_res_bake_off_to_add = df_res_bake_off.loc[\
        df_res_bake_off['classifier_name'].isin(classifiers_to_add) \
            & df_res_bake_off['dataset_name'].isin(DATASET_NAMES)]
    pd_bake_off = pd.concat([df_res,df_res_bake_off_to_add],sort=False)
    return pd_bake_off 
開發者ID:hfawaz,項目名稱:bigdata18,代碼行數:9,代碼來源:utils.py

示例4: add_themes

# 需要導入模塊: from utils import constants [as 別名]
# 或者: from utils.constants import UNIVARIATE_DATASET_NAMES [as 別名]
def add_themes(df_perf):
    for dataset_name in DATASET_NAMES:
        df_perf.loc[df_perf['dataset_name']==dataset_name,'theme']= \
            utils.constants.dataset_types[dataset_name]
        df_perf.loc[df_perf['dataset_name'] == dataset_name, 'theme_colors'] = \
            utils.constants.themes_colors[utils.constants.dataset_types[dataset_name]]
    return df_perf 
開發者ID:hfawaz,項目名稱:bigdata18,代碼行數:9,代碼來源:utils.py

示例5: read_all_datasets

# 需要導入模塊: from utils import constants [as 別名]
# 或者: from utils.constants import UNIVARIATE_DATASET_NAMES [as 別名]
def read_all_datasets(root_dir, archive_name):
    datasets_dict = {}

    dataset_names_to_sort = []

    if archive_name == 'TSC':
        for dataset_name in DATASET_NAMES:
            root_dir_dataset = root_dir + '/archives/' + archive_name + '/' + dataset_name + '/'
            file_name = root_dir_dataset + dataset_name
            x_train, y_train = readucr(file_name + '_TRAIN')
            x_test, y_test = readucr(file_name + '_TEST')

            datasets_dict[dataset_name] = (x_train.copy(), y_train.copy(), x_test.copy(),
                                           y_test.copy())

            dataset_names_to_sort.append((dataset_name, len(x_train)))

        dataset_names_to_sort.sort(key=operator.itemgetter(1))

        for i in range(len(DATASET_NAMES)):
            DATASET_NAMES[i] = dataset_names_to_sort[i][0]

    elif archive_name == 'InlineSkateXPs':

        for dataset_name in utils.constants.dataset_names_for_archive[archive_name]:
            root_dir_dataset = root_dir + '/archives/' + archive_name + '/' + dataset_name + '/'

            x_train = np.load(root_dir_dataset + 'x_train.npy')
            y_train = np.load(root_dir_dataset + 'y_train.npy')
            x_test = np.load(root_dir_dataset + 'x_test.npy')
            y_test = np.load(root_dir_dataset + 'y_test.npy')

            datasets_dict[dataset_name] = (x_train.copy(), y_train.copy(), x_test.copy(),
                                           y_test.copy())
    elif archive_name == 'SITS':
        return read_sits_xps(root_dir)
    else:
        print('error in archive name')
        exit()

    return datasets_dict 
開發者ID:hfawaz,項目名稱:InceptionTime,代碼行數:43,代碼來源:utils.py

示例6: read_all_datasets

# 需要導入模塊: from utils import constants [as 別名]
# 或者: from utils.constants import UNIVARIATE_DATASET_NAMES [as 別名]
def read_all_datasets(root_dir,archive_name, split_val = False): 
    datasets_dict = {}

    dataset_names_to_sort = []


    for dataset_name in DATASET_NAMES:
        root_dir_dataset =root_dir+'/archives/'+archive_name+'/'+dataset_name+'/'
        file_name = root_dir_dataset+dataset_name
        x_train, y_train = readucr(file_name+'_TRAIN')
        x_test, y_test = readucr(file_name+'_TEST')

        if split_val == True:
            # check if dataset has already been splitted
            temp_dir =root_dir_dataset+'TRAIN_VAL/'
            # print(temp_dir)
            train_test_dir = create_directory(temp_dir)
            # print(train_test_dir)
            if train_test_split is None:
                # then do no re-split because already splitted
                # read train set
                x_train,y_train = readucr(temp_dir+dataset_name+'_TRAIN')
                # read val set
                x_val,y_val = readucr(temp_dir+dataset_name+'_VAL')
            else:
                # split for cross validation set
                x_train,x_val,y_train,y_val  = train_test_split(x_train,y_train,
                    test_size=0.25)
                # concat train set
                train_set = np.zeros((y_train.shape[0],x_train.shape[1]+1),dtype=np.float64)
                train_set[:,0] = y_train
                train_set[:,1:] = x_train
                # concat val set
                val_set = np.zeros((y_val.shape[0],x_val.shape[1]+1),dtype=np.float64)
                val_set[:,0] = y_val
                val_set[:,1:] = x_val
                # save the train set
                np.savetxt(temp_dir+dataset_name+'_TRAIN',train_set,delimiter=',')
                # save the val set
                np.savetxt(temp_dir+dataset_name+'_VAL',val_set,delimiter=',')


            datasets_dict[dataset_name] = (x_train.copy(),y_train.copy(),x_val.copy(),
                y_val.copy(),x_test.copy(),y_test.copy())

        else:
            datasets_dict[dataset_name] = (x_train.copy(),y_train.copy(),x_test.copy(),
                y_test.copy())

        dataset_names_to_sort.append((dataset_name,len(x_train)))

    dataset_names_to_sort.sort(key=operator.itemgetter(1))

    for i in range(len(DATASET_NAMES)):
        DATASET_NAMES[i] = dataset_names_to_sort[i][0]

    return datasets_dict 
開發者ID:hfawaz,項目名稱:ijcnn19ensemble,代碼行數:59,代碼來源:utils.py

示例7: fit

# 需要導入模塊: from utils import constants [as 別名]
# 或者: from utils.constants import UNIVARIATE_DATASET_NAMES [as 別名]
def fit(self, x_train, y_train, x_test, y_test, y_true):

        y_pred = np.zeros(shape=y_test.shape)

        l = 0

        for dataset in datasets_names:

            if dataset == self.dataset_name:
                continue

            curr_dir = self.transfer_directory+dataset+'/'+self.dataset_name+'/'

            predictions_file_name = curr_dir + 'y_pred.npy'

            if check_if_file_exits(predictions_file_name):
                # then load only the predictions from the file
                curr_y_pred = np.load(predictions_file_name)
            else:
                # predict from models saved
                model = keras.models.load_model(curr_dir+'best_model.hdf5')
                curr_y_pred = model.predict(x_test)
                keras.backend.clear_session()
                np.save(predictions_file_name, curr_y_pred)

            y_pred = y_pred + curr_y_pred

            l += 1

            keras.backend.clear_session()

        y_pred = y_pred / l

        # save predictions
        np.save(self.output_directory+'y_pred.npy',y_pred)

        # convert the predicted from binary to integer
        y_pred = np.argmax(y_pred, axis=1)

        df_metrics = calculate_metrics(y_true, y_pred, 0.0)

        df_metrics.to_csv(self.output_directory + 'df_metrics.csv', index=False)

        print(self.dataset_name,df_metrics['accuracy'][0])

        gc.collect() 
開發者ID:hfawaz,項目名稱:ijcnn19ensemble,代碼行數:48,代碼來源:ensembletransfer.py


注:本文中的utils.constants.UNIVARIATE_DATASET_NAMES屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。