當前位置: 首頁>>代碼示例>>Python>>正文


Python tag_constants.TPU屬性代碼示例

本文整理匯總了Python中tensorflow.python.saved_model.tag_constants.TPU屬性的典型用法代碼示例。如果您正苦於以下問題:Python tag_constants.TPU屬性的具體用法?Python tag_constants.TPU怎麽用?Python tag_constants.TPU使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在tensorflow.python.saved_model.tag_constants的用法示例。


在下文中一共展示了tag_constants.TPU屬性的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _sync_variables_ops

# 需要導入模塊: from tensorflow.python.saved_model import tag_constants [as 別名]
# 或者: from tensorflow.python.saved_model.tag_constants import TPU [as 別名]
def _sync_variables_ops(ctx):
  """Create varriables synchronization ops.

  Gets the variables back from TPU nodes. This means the variables updated
  by TPU will now be *synced* to host memory.
  In BROADCAST mode, we skip this sync since the variables are ususally too
  big to transmit via RPC.

  Args:
    ctx: A `_InternalTPUContext` instance with mode.

  Returns:
    A list of sync ops.
  """

  if not ctx.is_input_broadcast_with_iterators():
    return [
        array_ops.check_numerics(v.read_value(),
                                 'Gradient for %s is NaN' % v.name).op
        for v in variables.trainable_variables()
    ]
  else:
    return [control_flow_ops.no_op()] 
開發者ID:ymcui,項目名稱:Chinese-XLNet,代碼行數:25,代碼來源:tpu_estimator.py

示例2: _increase_eval_step_op

# 需要導入模塊: from tensorflow.python.saved_model import tag_constants [as 別名]
# 或者: from tensorflow.python.saved_model.tag_constants import TPU [as 別名]
def _increase_eval_step_op(iterations_per_loop):
  """Returns an op to increase the eval step for TPU evaluation.

  Args:
    iterations_per_loop: Tensor. The number of eval steps running in TPU system
      before returning to CPU host for each `Session.run`.

  Returns:
    An operation
  """
  eval_step = evaluation._get_or_create_eval_step()  # pylint: disable=protected-access
  # Estimator evaluate increases 1 by default. So, we increase the difference.
  return state_ops.assign_add(
      eval_step,
      math_ops.cast(iterations_per_loop - 1, dtype=eval_step.dtype),
      use_locking=True) 
開發者ID:ymcui,項目名稱:Chinese-XLNet,代碼行數:18,代碼來源:tpu_estimator.py

示例3: __init__

# 需要導入模塊: from tensorflow.python.saved_model import tag_constants [as 別名]
# 或者: from tensorflow.python.saved_model.tag_constants import TPU [as 別名]
def __init__(self, input_fn, batch_axis, ctx):
    """Constructor.

    Args:
      input_fn: input fn for train or eval.
      batch_axis: A python tuple of int values describing how each tensor
        produced by the Estimator `input_fn` should be split across the TPU
        compute shards.
      ctx: A `_InternalTPUContext` instance with mode.

    Raises:
      ValueError: If both `sharded_features` and `num_cores` are `None`.
    """
    self._inputs_structure_recorder = _InputPipeline.InputsStructureRecorder(
        ctx.input_partition_dims)

    self._sharded_per_core = ctx.is_input_sharded_per_core()
    self._input_fn = input_fn
    self._infeed_queue = None
    self._ctx = ctx
    self._batch_axis = batch_axis 
開發者ID:ymcui,項目名稱:Chinese-XLNet,代碼行數:23,代碼來源:tpu_estimator.py

示例4: generate_infeed_enqueue_ops_and_dequeue_fn

# 需要導入模塊: from tensorflow.python.saved_model import tag_constants [as 別名]
# 或者: from tensorflow.python.saved_model.tag_constants import TPU [as 別名]
def generate_infeed_enqueue_ops_and_dequeue_fn(self):
    """Generates infeed enqueue ops and dequeue_fn."""
    # While tf.while_loop is called, the body function, which invokes
    # `enqueue_fn` passed in, is called to construct the graph. So, input_fn
    # structure is recorded.
    enqueue_ops, all_hooks, run_infeed_loop_on_coordinator = (
        self._invoke_input_fn_and_record_structure())

    self._validate_input_pipeline()

    def dequeue_fn():
      """dequeue_fn is used by TPU to retrieve the tensors."""
      # In the model-parallel case, both the host-side and device-side
      # computations must agree on the core on which infeed takes place. We
      # choose to perform infeed on logical core 0 of each replica.
      values = self._infeed_queue.generate_dequeue_op(tpu_device=0)
      # The unflatten process uses the structure information recorded above.
      return self._inputs_structure_recorder.unflatten_features_and_labels(
          values)

    return (enqueue_ops, dequeue_fn, all_hooks, run_infeed_loop_on_coordinator) 
開發者ID:ymcui,項目名稱:Chinese-XLNet,代碼行數:23,代碼來源:tpu_estimator.py

示例5: create_cpu_hostcall

# 需要導入模塊: from tensorflow.python.saved_model import tag_constants [as 別名]
# 或者: from tensorflow.python.saved_model.tag_constants import TPU [as 別名]
def create_cpu_hostcall(host_calls):
    """Runs on the host_call on CPU instead of TPU when use_tpu=False."""

    _OutfeedHostCall.validate(host_calls)
    ret = {}
    for name, host_call in host_calls.items():
      host_fn, tensors = host_call
      if isinstance(tensors, (tuple, list)):
        ret[name] = host_fn(*tensors)
      else:
        # Must be dict.
        try:
          ret[name] = host_fn(**tensors)
        except TypeError as e:
          logging.warning(
              'Exception while calling %s: %s. It is likely the tensors '
              '(%s[1]) do not match the '
              'function\'s arguments', name, e, name)
          raise e
    return ret 
開發者ID:ymcui,項目名稱:Chinese-XLNet,代碼行數:22,代碼來源:tpu_estimator.py

示例6: _convert_train_steps_to_hooks

# 需要導入模塊: from tensorflow.python.saved_model import tag_constants [as 別名]
# 或者: from tensorflow.python.saved_model.tag_constants import TPU [as 別名]
def _convert_train_steps_to_hooks(self, steps, max_steps):
    with self._ctx.with_mode(model_fn_lib.ModeKeys.TRAIN) as ctx:
      if ctx.is_running_on_cpu():
        return super(TPUEstimator, self)._convert_train_steps_to_hooks(
            steps, max_steps)

    # On TPU.
    if steps is None and max_steps is None:
      raise ValueError(
          'For TPU training, one of `steps` or `max_steps` must be set. '
          'Cannot be both `None`.')

    # Estimator.train has explicit positiveness check.
    if steps is not None:
      util_lib.check_positive_integer(steps, 'Train steps')
    if max_steps is not None:
      util_lib.check_positive_integer(max_steps, 'Train max_steps')

    return [
        _TPUStopAtStepHook(self._iterations_per_training_loop, steps, max_steps)
    ] 
開發者ID:ymcui,項目名稱:Chinese-XLNet,代碼行數:23,代碼來源:tpu_estimator.py

示例7: _increase_eval_step_op

# 需要導入模塊: from tensorflow.python.saved_model import tag_constants [as 別名]
# 或者: from tensorflow.python.saved_model.tag_constants import TPU [as 別名]
def _increase_eval_step_op(iterations_per_loop):
  """Returns an op to increase the eval step for TPU evaluation.

  Args:
    iterations_per_loop: Tensor. The number of eval steps running in TPU
        system before returning to CPU host for each `Session.run`.

  Returns:
    An operation
  """
  eval_step = evaluation._get_or_create_eval_step()  # pylint: disable=protected-access
  # Estimator evaluate increases 1 by default. So, we increase the difference.
  return state_ops.assign_add(
      eval_step,
      math_ops.cast(iterations_per_loop - 1, dtype=eval_step.dtype),
      use_locking=True) 
開發者ID:kimiyoung,項目名稱:transformer-xl,代碼行數:18,代碼來源:tpu_estimator.py

示例8: begin

# 需要導入模塊: from tensorflow.python.saved_model import tag_constants [as 別名]
# 或者: from tensorflow.python.saved_model.tag_constants import TPU [as 別名]
def begin(self):
    logging.info('TPU job name %s', self._master_job)
    self._iterations_per_loop_var = _create_or_get_iterations_per_loop()
    self._init_ops = []
    if self._should_initialize_tpu:
      self._finalize_ops = [tpu.shutdown_system(job=self._master_job)]
    else:
      self._finalize_ops = []

    summary_writer_init_ops = contrib_summary.summary_writer_initializer_op()
    self._init_ops.extend(summary_writer_init_ops)
    # Get all the writer resources from the initializer, so we know what to
    # flush.
    for op in summary_writer_init_ops:
      self._finalize_ops.append(contrib_summary.flush(writer=op.inputs[0])) 
開發者ID:ymcui,項目名稱:Chinese-XLNet,代碼行數:17,代碼來源:tpu_estimator.py

示例9: after_create_session

# 需要導入模塊: from tensorflow.python.saved_model import tag_constants [as 別名]
# 或者: from tensorflow.python.saved_model.tag_constants import TPU [as 別名]
def after_create_session(self, session, coord):
    if self._should_initialize_tpu:
      logging.info('Init TPU system')
      start = time.time()
      with ops.Graph().as_default():
        with tf_session.Session(
            self._master, config=self._session_config) as sess:
          sess.run(tpu.initialize_system(job=self._master_job))
      logging.info('Initialized TPU in %d seconds', time.time() - start)

    session.run(self._init_ops,
                options=config_pb2.RunOptions(timeout_in_ms=5 * 60 * 1000))

    if os.environ.get('TPU_SPLIT_COMPILE_AND_EXECUTE', '') == '1':
      logging.info('Compiling user program: this may take a while...')
      self._assertCompilationSucceeded(session.run(self._tpu_compile_op), coord)

    self._infeed_controller = self._create_infeed_controller(
        name='InfeedController', target=self._run_infeed, args=(session,))

    self._outfeed_controller = _OpQueueContext(
        name='OutfeedController', target=self._run_outfeed, args=(session,))

    # Enable the worker watchdog to terminate workers on coordinator exit.
    watchdog_timeout = int(os.environ.get('TF_TPU_WATCHDOG_TIMEOUT', '0'))
    if watchdog_timeout > 0:
      session_support.start_worker_watchdog(session,
                                            shutdown_timeout=watchdog_timeout) 
開發者ID:ymcui,項目名稱:Chinese-XLNet,代碼行數:30,代碼來源:tpu_estimator.py

示例10: _verify_estimator_spec

# 需要導入模塊: from tensorflow.python.saved_model import tag_constants [as 別名]
# 或者: from tensorflow.python.saved_model.tag_constants import TPU [as 別名]
def _verify_estimator_spec(self, estimator_spec):
    """Validates the estimator_spec."""
    if isinstance(estimator_spec, model_fn_lib._TPUEstimatorSpec):  # pylint: disable=protected-access
      return estimator_spec

    err_msg = '{} returned by EstimatorSpec is not supported in TPUEstimator.'
    if estimator_spec.training_chief_hooks:
      raise ValueError(
          err_msg.format('training_chief_hooks') + 'If you want' +
          ' to pass training hooks, please pass via training_hooks.')

    if estimator_spec.scaffold:
      logging.warning('EstimatorSpec.Scaffold is ignored by TPU train/eval. '
                      'Please use TPUEstimatorSpec.')
    return estimator_spec 
開發者ID:ymcui,項目名稱:Chinese-XLNet,代碼行數:17,代碼來源:tpu_estimator.py

示例11: _convert_eval_steps_to_hooks

# 需要導入模塊: from tensorflow.python.saved_model import tag_constants [as 別名]
# 或者: from tensorflow.python.saved_model.tag_constants import TPU [as 別名]
def _convert_eval_steps_to_hooks(self, steps):
    with self._ctx.with_mode(model_fn_lib.ModeKeys.EVAL) as ctx:
      if ctx.is_running_on_cpu():
        return super(TPUEstimator, self)._convert_eval_steps_to_hooks(steps)

    if steps is None:
      raise ValueError('Evaluate `steps` must be set on TPU. Cannot be `None`.')

    util_lib.check_positive_integer(steps, 'Eval steps')

    return [
        evaluation._StopAfterNEvalsHook(  # pylint: disable=protected-access
            num_evals=steps),
        _SetEvalIterationsHook(steps)
    ] 
開發者ID:ymcui,項目名稱:Chinese-XLNet,代碼行數:17,代碼來源:tpu_estimator.py

示例12: _eval_on_tpu_system

# 需要導入模塊: from tensorflow.python.saved_model import tag_constants [as 別名]
# 或者: from tensorflow.python.saved_model.tag_constants import TPU [as 別名]
def _eval_on_tpu_system(ctx, model_fn_wrapper, dequeue_fn):
  """Executes `model_fn_wrapper` multiple times on all TPU shards."""
  iterations_per_loop_var = _create_or_get_iterations_per_loop()

  (single_tpu_eval_step, host_calls, captured_scaffold_fn, captured_eval_hooks
  ) = model_fn_wrapper.convert_to_single_tpu_eval_step(dequeue_fn)

  def multi_tpu_eval_steps_on_single_shard():
    loop_vars = [_ZERO_LOSS]
    if model_fn_wrapper._eval_cache_fn is not None:
      batch_size = ctx.global_batch_size
      num_shards = ctx._config._tpu_config.num_shards
      loop_vars += model_fn_wrapper._eval_cache_fn(batch_size // num_shards)

    return training_loop.repeat(
        iterations_per_loop_var,
        single_tpu_eval_step,
        loop_vars)

  compile_op, ret = tpu.split_compile_and_shard(
      multi_tpu_eval_steps_on_single_shard,
      inputs=[],
      num_shards=ctx.num_replicas,
      outputs_from_all_shards=False,
      device_assignment=ctx.device_assignment)

  loss = ret[0]
  scaffold = _get_scaffold(captured_scaffold_fn)
  return compile_op, loss, host_calls, scaffold, captured_eval_hooks.get() 
開發者ID:ymcui,項目名稱:Chinese-XLNet,代碼行數:31,代碼來源:tpu_estimator.py

示例13: _train_on_tpu_system

# 需要導入模塊: from tensorflow.python.saved_model import tag_constants [as 別名]
# 或者: from tensorflow.python.saved_model.tag_constants import TPU [as 別名]
def _train_on_tpu_system(ctx, model_fn_wrapper, dequeue_fn):
  """Executes `model_fn_wrapper` multiple times on all TPU shards."""
  iterations_per_loop_var = _create_or_get_iterations_per_loop()

  (single_tpu_train_step, host_call, captured_scaffold_fn,
   captured_training_hooks) = (
       model_fn_wrapper.convert_to_single_tpu_train_step(dequeue_fn))

  def multi_tpu_train_steps_on_single_shard():
    loop_vars = [_INITIAL_LOSS]
    if model_fn_wrapper._train_cache_fn is not None:
      batch_size = ctx.global_batch_size
      num_shards = ctx._config._tpu_config.num_shards
      loop_vars += model_fn_wrapper._train_cache_fn(batch_size // num_shards)

    return training_loop.repeat(
        iterations_per_loop_var,
        single_tpu_train_step,
        loop_vars)

  compile_op, ret = tpu.split_compile_and_shard(
      multi_tpu_train_steps_on_single_shard,
      inputs=[],
      num_shards=ctx.num_replicas,
      outputs_from_all_shards=False,
      device_assignment=ctx.device_assignment)

  loss = ret[0]
  scaffold = _get_scaffold(captured_scaffold_fn)
  return compile_op, loss, host_call, scaffold, captured_training_hooks.get() 
開發者ID:ymcui,項目名稱:Chinese-XLNet,代碼行數:32,代碼來源:tpu_estimator.py

示例14: AddOp

# 需要導入模塊: from tensorflow.python.saved_model import tag_constants [as 別名]
# 或者: from tensorflow.python.saved_model.tag_constants import TPU [as 別名]
def AddOp(self, op):  # pylint: disable=invalid-name
    for c in op.inputs:
      if tpu._TPU_REPLICATE_ATTR in c.op.node_def.attr:  # pylint: disable=protected-access
        raise ValueError('{}: Op {} depends on TPU computation {}, '
                         'which is not allowed.'.format(self._message, op, c)) 
開發者ID:ymcui,項目名稱:Chinese-XLNet,代碼行數:7,代碼來源:tpu_estimator.py


注:本文中的tensorflow.python.saved_model.tag_constants.TPU屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。