本文整理匯總了Python中tensorflow.python.saved_model.signature_constants.REGRESS_METHOD_NAME屬性的典型用法代碼示例。如果您正苦於以下問題:Python signature_constants.REGRESS_METHOD_NAME屬性的具體用法?Python signature_constants.REGRESS_METHOD_NAME怎麽用?Python signature_constants.REGRESS_METHOD_NAME使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類tensorflow.python.saved_model.signature_constants
的用法示例。
在下文中一共展示了signature_constants.REGRESS_METHOD_NAME屬性的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testRegressionSignatureDef
# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import REGRESS_METHOD_NAME [as 別名]
def testRegressionSignatureDef(self):
input1 = constant_op.constant("a", name="input-1")
output1 = constant_op.constant("b", name="output-1")
signature_def = signature_def_utils.regression_signature_def(input1,
output1)
self.assertEqual(signature_constants.REGRESS_METHOD_NAME,
signature_def.method_name)
# Check inputs in signature def.
self.assertEqual(1, len(signature_def.inputs))
x_tensor_info_actual = (
signature_def.inputs[signature_constants.REGRESS_INPUTS])
self.assertEqual("input-1:0", x_tensor_info_actual.name)
self.assertEqual(types_pb2.DT_STRING, x_tensor_info_actual.dtype)
self.assertEqual(0, len(x_tensor_info_actual.tensor_shape.dim))
# Check outputs in signature def.
self.assertEqual(1, len(signature_def.outputs))
y_tensor_info_actual = (
signature_def.outputs[signature_constants.REGRESS_OUTPUTS])
self.assertEqual("output-1:0", y_tensor_info_actual.name)
self.assertEqual(types_pb2.DT_STRING, y_tensor_info_actual.dtype)
self.assertEqual(0, len(y_tensor_info_actual.tensor_shape.dim))
示例2: testConvertDefaultSignatureRegressionToSignatureDef
# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import REGRESS_METHOD_NAME [as 別名]
def testConvertDefaultSignatureRegressionToSignatureDef(self):
signatures_proto = manifest_pb2.Signatures()
regression_signature = manifest_pb2.RegressionSignature()
regression_signature.input.CopyFrom(
manifest_pb2.TensorBinding(
tensor_name=signature_constants.REGRESS_INPUTS))
regression_signature.output.CopyFrom(
manifest_pb2.TensorBinding(
tensor_name=signature_constants.REGRESS_OUTPUTS))
signatures_proto.default_signature.regression_signature.CopyFrom(
regression_signature)
signature_def = bundle_shim._convert_default_signature_to_signature_def(
signatures_proto)
# Validate regression signature correctly copied over.
self.assertEqual(signature_def.method_name,
signature_constants.REGRESS_METHOD_NAME)
self.assertEqual(len(signature_def.inputs), 1)
self.assertEqual(len(signature_def.outputs), 1)
self.assertProtoEquals(
signature_def.inputs[signature_constants.REGRESS_INPUTS],
meta_graph_pb2.TensorInfo(name=signature_constants.REGRESS_INPUTS))
self.assertProtoEquals(
signature_def.outputs[signature_constants.REGRESS_OUTPUTS],
meta_graph_pb2.TensorInfo(name=signature_constants.REGRESS_OUTPUTS))
示例3: testSavedModelBasic
# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import REGRESS_METHOD_NAME [as 別名]
def testSavedModelBasic(self):
base_path = test.test_src_dir_path(SAVED_MODEL_PATH)
ops.reset_default_graph()
sess, meta_graph_def = (
bundle_shim.load_session_bundle_or_saved_model_bundle_from_path(
base_path,
tags=[tag_constants.SERVING],
target="",
config=config_pb2.ConfigProto(device_count={"CPU": 2})))
self.assertTrue(sess)
# Check basic signature def property.
signature_def = meta_graph_def.signature_def
self.assertEqual(len(signature_def), 2)
self.assertEqual(
signature_def[signature_constants.REGRESS_METHOD_NAME].method_name,
signature_constants.REGRESS_METHOD_NAME)
signature = signature_def["tensorflow/serving/regress"]
asset_path = os.path.join(base_path, saved_model_constants.ASSETS_DIRECTORY)
with sess.as_default():
output1 = sess.run(["filename_tensor:0"])
self.assertEqual(["foo.txt"], output1)
示例4: _is_valid_regression_signature
# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import REGRESS_METHOD_NAME [as 別名]
def _is_valid_regression_signature(signature_def):
"""Determine whether the argument is a servable 'regress' SignatureDef."""
if signature_def.method_name != signature_constants.REGRESS_METHOD_NAME:
return False
if (set(signature_def.inputs.keys())
!= set([signature_constants.REGRESS_INPUTS])):
return False
if (signature_def.inputs[signature_constants.REGRESS_INPUTS].dtype !=
types_pb2.DT_STRING):
return False
if (set(signature_def.outputs.keys())
!= set([signature_constants.REGRESS_OUTPUTS])):
return False
if (signature_def.outputs[signature_constants.REGRESS_OUTPUTS].dtype !=
types_pb2.DT_FLOAT):
return False
return True
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:22,代碼來源:signature_def_utils_impl.py
示例5: regression_signature_def
# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import REGRESS_METHOD_NAME [as 別名]
def regression_signature_def(examples, predictions):
"""Creates regression signature from given examples and predictions.
Args:
examples: `Tensor`.
predictions: `Tensor`.
Returns:
A regression-flavored signature_def.
Raises:
ValueError: If examples is `None`.
"""
if examples is None:
raise ValueError('examples cannot be None for regression.')
if predictions is None:
raise ValueError('predictions cannot be None for regression.')
input_tensor_info = utils.build_tensor_info(examples)
signature_inputs = {signature_constants.REGRESS_INPUTS: input_tensor_info}
output_tensor_info = utils.build_tensor_info(predictions)
signature_outputs = {signature_constants.REGRESS_OUTPUTS: output_tensor_info}
signature_def = build_signature_def(
signature_inputs, signature_outputs,
signature_constants.REGRESS_METHOD_NAME)
return signature_def
示例6: regression_signature_def
# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import REGRESS_METHOD_NAME [as 別名]
def regression_signature_def(examples, predictions):
"""Creates regression signature from given examples and predictions.
Args:
examples: `Tensor`.
predictions: `Tensor`.
Returns:
A regression-flavored signature_def.
Raises:
ValueError: If examples is `None`.
"""
if examples is None:
raise ValueError('Regression examples cannot be None.')
if not isinstance(examples, ops.Tensor):
raise ValueError('Regression examples must be a string Tensor.')
if predictions is None:
raise ValueError('Regression predictions cannot be None.')
input_tensor_info = utils.build_tensor_info(examples)
if input_tensor_info.dtype != types_pb2.DT_STRING:
raise ValueError('Regression examples must be a string Tensor.')
signature_inputs = {signature_constants.REGRESS_INPUTS: input_tensor_info}
output_tensor_info = utils.build_tensor_info(predictions)
if output_tensor_info.dtype != types_pb2.DT_FLOAT:
raise ValueError('Regression output must be a float Tensor.')
signature_outputs = {signature_constants.REGRESS_OUTPUTS: output_tensor_info}
signature_def = build_signature_def(
signature_inputs, signature_outputs,
signature_constants.REGRESS_METHOD_NAME)
return signature_def
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:37,代碼來源:signature_def_utils_impl.py
示例7: _convert_default_signature_to_signature_def
# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import REGRESS_METHOD_NAME [as 別名]
def _convert_default_signature_to_signature_def(signatures):
"""Convert default signature to object of type SignatureDef.
Args:
signatures: object of type manifest_pb2.Signatures()
Returns:
object of type SignatureDef which contains a converted version of default
signature from input signatures object
Returns None if signature is of generic type because it cannot be converted
to SignatureDef.
"""
default_signature = signatures.default_signature
signature_def = meta_graph_pb2.SignatureDef()
if default_signature.WhichOneof("type") == "regression_signature":
regression_signature = default_signature.regression_signature
signature_def.method_name = signature_constants.REGRESS_METHOD_NAME
_add_input_to_signature_def(regression_signature.input.tensor_name,
signature_constants.REGRESS_INPUTS,
signature_def)
_add_output_to_signature_def(regression_signature.output.tensor_name,
signature_constants.REGRESS_OUTPUTS,
signature_def)
elif default_signature.WhichOneof("type") == "classification_signature":
classification_signature = default_signature.classification_signature
signature_def.method_name = signature_constants.CLASSIFY_METHOD_NAME
_add_input_to_signature_def(classification_signature.input.tensor_name,
signature_constants.CLASSIFY_INPUTS,
signature_def)
_add_output_to_signature_def(classification_signature.classes.tensor_name,
signature_constants.CLASSIFY_OUTPUT_CLASSES,
signature_def)
_add_output_to_signature_def(classification_signature.scores.tensor_name,
signature_constants.CLASSIFY_OUTPUT_SCORES,
signature_def)
else:
logging.error("Only classification and regression default signatures "
"are supported for up-conversion. %s is not "
"supported" % default_signature.WhichOneof("type"))
return None
return signature_def
示例8: testConvertSignaturesToSignatureDefs
# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import REGRESS_METHOD_NAME [as 別名]
def testConvertSignaturesToSignatureDefs(self):
base_path = test.test_src_dir_path(SESSION_BUNDLE_PATH)
meta_graph_filename = os.path.join(base_path,
constants.META_GRAPH_DEF_FILENAME)
metagraph_def = meta_graph.read_meta_graph_file(meta_graph_filename)
default_signature_def, named_signature_def = (
bundle_shim._convert_signatures_to_signature_defs(metagraph_def))
self.assertEqual(default_signature_def.method_name,
signature_constants.REGRESS_METHOD_NAME)
self.assertEqual(len(default_signature_def.inputs), 1)
self.assertEqual(len(default_signature_def.outputs), 1)
self.assertProtoEquals(
default_signature_def.inputs[signature_constants.REGRESS_INPUTS],
meta_graph_pb2.TensorInfo(name="tf_example:0"))
self.assertProtoEquals(
default_signature_def.outputs[signature_constants.REGRESS_OUTPUTS],
meta_graph_pb2.TensorInfo(name="Identity:0"))
self.assertEqual(named_signature_def.method_name,
signature_constants.PREDICT_METHOD_NAME)
self.assertEqual(len(named_signature_def.inputs), 1)
self.assertEqual(len(named_signature_def.outputs), 1)
self.assertProtoEquals(
named_signature_def.inputs["x"], meta_graph_pb2.TensorInfo(name="x:0"))
self.assertProtoEquals(
named_signature_def.outputs["y"], meta_graph_pb2.TensorInfo(name="y:0"))
# Now try default signature only
collection_def = metagraph_def.collection_def
signatures_proto = manifest_pb2.Signatures()
signatures = collection_def[constants.SIGNATURES_KEY].any_list.value[0]
signatures.Unpack(signatures_proto)
named_only_signatures_proto = manifest_pb2.Signatures()
named_only_signatures_proto.CopyFrom(signatures_proto)
default_only_signatures_proto = manifest_pb2.Signatures()
default_only_signatures_proto.CopyFrom(signatures_proto)
default_only_signatures_proto.named_signatures.clear()
default_only_signatures_proto.ClearField("named_signatures")
metagraph_def.collection_def[constants.SIGNATURES_KEY].any_list.value[
0].Pack(default_only_signatures_proto)
default_signature_def, named_signature_def = (
bundle_shim._convert_signatures_to_signature_defs(metagraph_def))
self.assertEqual(default_signature_def.method_name,
signature_constants.REGRESS_METHOD_NAME)
self.assertEqual(named_signature_def, None)
named_only_signatures_proto.ClearField("default_signature")
metagraph_def.collection_def[constants.SIGNATURES_KEY].any_list.value[
0].Pack(named_only_signatures_proto)
default_signature_def, named_signature_def = (
bundle_shim._convert_signatures_to_signature_defs(metagraph_def))
self.assertEqual(named_signature_def.method_name,
signature_constants.PREDICT_METHOD_NAME)
self.assertEqual(default_signature_def, None)
示例9: export
# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import REGRESS_METHOD_NAME [as 別名]
def export(model_version, model_dir, sess, x, y_op):
"""導出tensorflow_serving可用的模型
SavedModel(tensorflow.python.saved_model)提供了一種跨語言格式來保存和恢複訓練後的TensorFlow模型。它使用方法簽名來定義Graph的輸入和輸出,使上層係統能夠更方便地生成、調用或轉換TensorFlow模型。
SavedModelBuilder類提供保存Graphs、Variables及Assets的方法。所保存的Graphs必須標注用途標簽。在這個實例中我們打算將模型用於服務而非訓練,因此我們用SavedModel預定義好的tag_constant.Serving標簽。
為了方便地構建簽名,SavedModel提供了signature_def_utils API。我們通過signature_def_utils.build_signature_def()來構建predict_signature。一個predict_signature至少包含以下參數:
* inputs = {'x': tensor_info_x} 指定輸入的tensor信息
* outputs = {'y': tensor_info_y} 指定輸出的tensor信息
* method_name = signature_constants.PREDICT_METHOD_NAME
method_name定義方法名,它的值應該是tensorflow/serving/predict、tensorflow/serving/classify和tensorflow/serving/regress三者之一。Builder標簽用來明確Meta Graph被加載的方式,隻接受serve和train兩種類型。
"""
if model_version <= 0:
logging.warning('Please specify a positive value for version number.')
sys.exit()
path = os.path.dirname(os.path.abspath(model_dir))
if os.path.isdir(path) == False:
logging.warning('Path (%s) not exists, making directories...', path)
os.makedirs(path)
export_path = os.path.join(
compat.as_bytes(model_dir),
compat.as_bytes(str(model_version)))
if os.path.isdir(export_path) == True:
logging.warning('Path (%s) exists, removing directories...', export_path)
shutil.rmtree(export_path)
builder = saved_model_builder.SavedModelBuilder(export_path)
tensor_info_x = utils.build_tensor_info(x)
tensor_info_y = utils.build_tensor_info(y_op)
prediction_signature = signature_def_utils.build_signature_def(
inputs={'x': tensor_info_x},
outputs={'y': tensor_info_y},
# signature_constants.CLASSIFY_METHOD_NAME = "tensorflow/serving/classify"
# signature_constants.PREDICT_METHOD_NAME = "tensorflow/serving/predict"
# signature_constants.REGRESS_METHOD_NAME = "tensorflow/serving/regress"
# 如果缺失method_name會報錯:
# grpc.framework.interfaces.face.face.AbortionError: AbortionError(code=StatusCode.INTERNAL, details="Expected prediction signature method_name to be one of {tensorflow/serving/predict, tensorflow/serving/classify, tensorflow/serving/regress}. Was: ")
method_name=signature_constants.PREDICT_METHOD_NAME)
builder.add_meta_graph_and_variables(
sess,
# tag_constants.SERVING = "serve"
# tag_constants.TRAINING = "train"
# 如果隻有train標簽,TensorFlow Serving加載時會報錯:
# E tensorflow_serving/core/aspired_versions_manager.cc:351] Servable {name: default version: 2} cannot be loaded: Not found: Could not find meta graph def matching supplied tags.
[tag_constants.SERVING],
signature_def_map={
'predict_text': prediction_signature,
# 如果缺失會報錯:
# grpc.framework.interfaces.face.face.AbortionError: AbortionError(code=StatusCode.FAILED_PRECONDITION, details="Default serving signature key not found.")
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: prediction_signature
})
builder.save()