當前位置: 首頁>>代碼示例>>Python>>正文


Python signature_constants.PREDICT_METHOD_NAME屬性代碼示例

本文整理匯總了Python中tensorflow.python.saved_model.signature_constants.PREDICT_METHOD_NAME屬性的典型用法代碼示例。如果您正苦於以下問題:Python signature_constants.PREDICT_METHOD_NAME屬性的具體用法?Python signature_constants.PREDICT_METHOD_NAME怎麽用?Python signature_constants.PREDICT_METHOD_NAME使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在tensorflow.python.saved_model.signature_constants的用法示例。


在下文中一共展示了signature_constants.PREDICT_METHOD_NAME屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_signature

# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import PREDICT_METHOD_NAME [as 別名]
def build_signature(inputs, outputs):
  """Build the signature.

  Not using predic_signature_def in saved_model because it is replacing the
  tensor name, b/35900497.

  Args:
    inputs: a dictionary of tensor name to tensor
    outputs: a dictionary of tensor name to tensor
  Returns:
    The signature, a SignatureDef proto.
  """
  signature_inputs = {key: saved_model_utils.build_tensor_info(tensor)
                      for key, tensor in inputs.items()}
  signature_outputs = {key: saved_model_utils.build_tensor_info(tensor)
                       for key, tensor in outputs.items()}

  signature_def = signature_def_utils.build_signature_def(
      signature_inputs, signature_outputs,
      signature_constants.PREDICT_METHOD_NAME)

  return signature_def 
開發者ID:GoogleCloudPlatform,項目名稱:cloudml-edge-automation,代碼行數:24,代碼來源:model.py

示例2: export_model

# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import PREDICT_METHOD_NAME [as 別名]
def export_model(self, model_dir, global_step_val, last_checkpoint):
    """Exports the model so that it can used for batch predictions."""

    with self.graph.as_default():
      with tf.Session() as session:
        session.run(tf.global_variables_initializer())
        self.saver.restore(session, last_checkpoint)

        signature = signature_def_utils.build_signature_def(
            inputs=self.inputs,
            outputs=self.outputs,
            method_name=signature_constants.PREDICT_METHOD_NAME)

        signature_map = {signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: 
                         signature}

        model_builder = saved_model_builder.SavedModelBuilder(model_dir)
        model_builder.add_meta_graph_and_variables(session,
            tags=[tag_constants.SERVING],
            signature_def_map=signature_map,
            clear_devices=True)
        model_builder.save() 
開發者ID:antoine77340,項目名稱:Youtube-8M-WILLOW,代碼行數:24,代碼來源:export_model.py

示例3: export_model

# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import PREDICT_METHOD_NAME [as 別名]
def export_model(self, model_dir, global_step_val, last_checkpoint):
    """Exports the model so that it can used for batch predictions."""

    with self.graph.as_default():
      with tf.Session() as session:
        session.run(tf.global_variables_initializer())
        self.saver.restore(session, last_checkpoint)

        signature = signature_def_utils.build_signature_def(
            inputs=self.inputs,
            outputs=self.outputs,
            method_name=signature_constants.PREDICT_METHOD_NAME)

        signature_map = {
            signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature
        }

        model_builder = saved_model_builder.SavedModelBuilder(model_dir)
        model_builder.add_meta_graph_and_variables(
            session,
            tags=[tag_constants.SERVING],
            signature_def_map=signature_map,
            clear_devices=True)
        model_builder.save() 
開發者ID:google,項目名稱:youtube-8m,代碼行數:26,代碼來源:export_model.py

示例4: export_model

# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import PREDICT_METHOD_NAME [as 別名]
def export_model(self, model_dir, global_step_val, last_checkpoint):
    """Exports the model so that it can used for batch predictions."""

    with self.graph.as_default():
      with tf.Session() as session:
        session.run(tf.global_variables_initializer())
        self.saver.restore(session, last_checkpoint)

        signature = signature_def_utils.build_signature_def(
            inputs=self.inputs,
            outputs=self.outputs,
            method_name=signature_constants.PREDICT_METHOD_NAME)

        signature_map = {signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                         signature}

        model_builder = saved_model_builder.SavedModelBuilder(model_dir)
        model_builder.add_meta_graph_and_variables(session,
            tags=[tag_constants.SERVING],
            signature_def_map=signature_map,
            clear_devices=True)
        model_builder.save() 
開發者ID:miha-skalic,項目名稱:youtube8mchallenge,代碼行數:24,代碼來源:export_model.py

示例5: save_signature

# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import PREDICT_METHOD_NAME [as 別名]
def save_signature(self, directory):

        signature = signature_def_utils.build_signature_def(
            inputs={
                'input':
                saved_model_utils.build_tensor_info(self.input),
                'dropout_rate':
                saved_model_utils.build_tensor_info(self.dropout_rate)
            },
            outputs={
                'output': saved_model_utils.build_tensor_info(self.output)
            },
            method_name=signature_constants.PREDICT_METHOD_NAME)
        signature_map = {
            signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature
        }
        model_builder = saved_model_builder.SavedModelBuilder(directory)
        model_builder.add_meta_graph_and_variables(
            self.sess,
            tags=[tag_constants.SERVING],
            signature_def_map=signature_map,
            clear_devices=True)
        model_builder.save(as_text=False) 
開發者ID:leimao,項目名稱:Frozen_Graph_TensorFlow,代碼行數:25,代碼來源:cnn.py

示例6: export_model

# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import PREDICT_METHOD_NAME [as 別名]
def export_model(self, model_dir, global_step_val, last_checkpoint):
        """Exports the model so that it can used for batch predictions."""
        with self.graph.as_default():
            with tf.Session() as session:
                session.run(tf.global_variables_initializer())
                self.saver.restore(session, last_checkpoint)

                signature = signature_def_utils.build_signature_def(
                    inputs=self.inputs,
                    outputs=self.outputs,
                    method_name=signature_constants.PREDICT_METHOD_NAME)

                signature_map = {signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                                     signature}

                model_builder = saved_model_builder.SavedModelBuilder(model_dir)
                model_builder.add_meta_graph_and_variables(session,
                                                           tags=[tag_constants.SERVING],
                                                           signature_def_map=signature_map,
                                                           clear_devices=True)
                model_builder.save() 
開發者ID:pomonam,項目名稱:AttentionCluster,代碼行數:23,代碼來源:export_model.py

示例7: export_model

# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import PREDICT_METHOD_NAME [as 別名]
def export_model(self, model_dir, global_step_val, last_checkpoint):
    """Exports the model so that it can used for batch predictions."""

    with self.graph.as_default():
      with tf.Session(config=self.config) as session:
        session.run(tf.global_variables_initializer())
        self.saver.restore(session, last_checkpoint)

        signature = signature_def_utils.build_signature_def(
            inputs=self.inputs,
            outputs=self.outputs,
            method_name=signature_constants.PREDICT_METHOD_NAME)

        signature_map = {signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                         signature}

        model_builder = saved_model_builder.SavedModelBuilder(model_dir)
        model_builder.add_meta_graph_and_variables(session,
            tags=[tag_constants.SERVING],
            signature_def_map=signature_map,
            clear_devices=True)
        model_builder.save() 
開發者ID:mpekalski,項目名稱:Y8M,代碼行數:24,代碼來源:export_model.py

示例8: export

# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import PREDICT_METHOD_NAME [as 別名]
def export(self, last_checkpoint, output_dir):
    """Builds a prediction graph and xports the model.

    Args:
      last_checkpoint: The latest checkpoint from training.
      output_dir: Path to the folder to be used to output the model.
    """
    logging.info('Exporting prediction graph to %s', output_dir)
    with tf.Session(graph=tf.Graph()) as sess:
      # Build and save prediction meta graph and trained variable values.
      input_signatures, output_signatures = self.build_prediction_graph()
      # Remove this if once Tensorflow 0.12 is standard.
      try:
        init_op = tf.global_variables_initializer()
      except AttributeError:
        init_op = tf.initialize_all_variables()
      sess.run(init_op)
      trained_saver = tf.train.Saver()
      trained_saver.restore(sess, last_checkpoint)

      predict_signature_def = signature_def_utils.build_signature_def(
          input_signatures, output_signatures,
          signature_constants.PREDICT_METHOD_NAME)
      # Create a saver for writing SavedModel training checkpoints.
      build = builder.SavedModelBuilder(
          os.path.join(output_dir, 'saved_model'))
      build.add_meta_graph_and_variables(
          sess, [tag_constants.SERVING],
          signature_def_map={
              signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                  predict_signature_def
          },
          assets_collection=tf.get_collection(tf.GraphKeys.ASSET_FILEPATHS))
      build.save() 
開發者ID:GoogleCloudPlatform,項目名稱:cloudml-samples,代碼行數:36,代碼來源:model.py

示例9: predict_signature_def

# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import PREDICT_METHOD_NAME [as 別名]
def predict_signature_def(inputs, outputs):
  """Creates prediction signature from given inputs and outputs.

  Args:
    inputs: dict of string to `Tensor`.
    outputs: dict of string to `Tensor`.

  Returns:
    A prediction-flavored signature_def.

  Raises:
    ValueError: If inputs or outputs is `None`.
  """
  if inputs is None or not inputs:
    raise ValueError('inputs cannot be None or empty for prediction.')
  if outputs is None:
    raise ValueError('outputs cannot be None or empty for prediction.')

  signature_inputs = {key: utils.build_tensor_info(tensor)
                      for key, tensor in inputs.items()}
  signature_outputs = {key: utils.build_tensor_info(tensor)
                       for key, tensor in outputs.items()}

  signature_def = build_signature_def(
      signature_inputs, signature_outputs,
      signature_constants.PREDICT_METHOD_NAME)

  return signature_def 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:30,代碼來源:signature_def_utils_impl.py

示例10: _convert_named_signatures_to_signature_def

# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import PREDICT_METHOD_NAME [as 別名]
def _convert_named_signatures_to_signature_def(signatures):
  """Convert named signatures to object of type SignatureDef.

  Args:
    signatures: object of type manifest_pb2.Signatures()

  Returns:
    object of type SignatureDef which contains a converted version of named
    signatures from input signatures object

  Raises:
    RuntimeError: if input and output named signatures are not of type
    GenericSignature
  """
  signature_def = meta_graph_pb2.SignatureDef()
  input_signature = signatures.named_signatures[
      signature_constants.PREDICT_INPUTS]
  output_signature = signatures.named_signatures[
      signature_constants.PREDICT_OUTPUTS]
  # TODO(pdudnik): what if there are other signatures? Mimic cr/140900781 once
  # it is submitted.
  if (input_signature.WhichOneof("type") != "generic_signature" or
      output_signature.WhichOneof("type") != "generic_signature"):
    raise RuntimeError("Named input and output signatures can only be "
                       "up-converted if they are generic signature. "
                       "Input signature type is %s, output signature type is "
                       "%s" % (input_signature.WhichOneof("type"),
                               output_signature.WhichOneof("type")))

  signature_def.method_name = signature_constants.PREDICT_METHOD_NAME
  for key, val in input_signature.generic_signature.map.items():
    _add_input_to_signature_def(val.tensor_name, key, signature_def)
  for key, val in output_signature.generic_signature.map.items():
    _add_output_to_signature_def(val.tensor_name, key, signature_def)
  return signature_def 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:37,代碼來源:bundle_shim.py

示例11: testPredictionSignatureDef

# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import PREDICT_METHOD_NAME [as 別名]
def testPredictionSignatureDef(self):
    input1 = constant_op.constant("a", name="input-1")
    input2 = constant_op.constant("b", name="input-2")
    output1 = constant_op.constant("c", name="output-1")
    output2 = constant_op.constant("d", name="output-2")
    signature_def = signature_def_utils.predict_signature_def({
        "input-1": input1,
        "input-2": input2
    }, {"output-1": output1,
        "output-2": output2})

    self.assertEqual(signature_constants.PREDICT_METHOD_NAME,
                     signature_def.method_name)

    # Check inputs in signature def.
    self.assertEqual(2, len(signature_def.inputs))
    input1_tensor_info_actual = (signature_def.inputs["input-1"])
    self.assertEqual("input-1:0", input1_tensor_info_actual.name)
    self.assertEqual(types_pb2.DT_STRING, input1_tensor_info_actual.dtype)
    self.assertEqual(0, len(input1_tensor_info_actual.tensor_shape.dim))
    input2_tensor_info_actual = (signature_def.inputs["input-2"])
    self.assertEqual("input-2:0", input2_tensor_info_actual.name)
    self.assertEqual(types_pb2.DT_STRING, input2_tensor_info_actual.dtype)
    self.assertEqual(0, len(input2_tensor_info_actual.tensor_shape.dim))

    # Check outputs in signature def.
    self.assertEqual(2, len(signature_def.outputs))
    output1_tensor_info_actual = (signature_def.outputs["output-1"])
    self.assertEqual("output-1:0", output1_tensor_info_actual.name)
    self.assertEqual(types_pb2.DT_STRING, output1_tensor_info_actual.dtype)
    self.assertEqual(0, len(output1_tensor_info_actual.tensor_shape.dim))
    output2_tensor_info_actual = (signature_def.outputs["output-2"])
    self.assertEqual("output-2:0", output2_tensor_info_actual.name)
    self.assertEqual(types_pb2.DT_STRING, output2_tensor_info_actual.dtype)
    self.assertEqual(0, len(output2_tensor_info_actual.tensor_shape.dim)) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:37,代碼來源:signature_def_utils_test.py

示例12: predict_signature_def

# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import PREDICT_METHOD_NAME [as 別名]
def predict_signature_def(inputs, outputs):
  """Creates prediction signature from given inputs and outputs.

  Args:
    inputs: dict of string to `Tensor`.
    outputs: dict of string to `Tensor`.

  Returns:
    A prediction-flavored signature_def.

  Raises:
    ValueError: If inputs or outputs is `None`.
  """
  if inputs is None or not inputs:
    raise ValueError('inputs cannot be None or empty for prediction.')
  if outputs is None:
    raise ValueError('outputs cannot be None or empty for prediction.')

  # If there's only one input or output, we can standardize keys
  if len(inputs) == 1:
    (_, value), = inputs.items()
    inputs = {signature_constants.PREDICT_INPUTS: value}
  if len(outputs) == 1:
    (_, value), = outputs.items()
    outputs = {signature_constants.PREDICT_OUTPUTS: value}

  signature_inputs = {key: utils.build_tensor_info(tensor)
                      for key, tensor in inputs.items()}
  signature_outputs = {key: utils.build_tensor_info(tensor)
                       for key, tensor in outputs.items()}

  signature_def = build_signature_def(
      signature_inputs, signature_outputs,
      signature_constants.PREDICT_METHOD_NAME)

  return signature_def 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:38,代碼來源:signature_def_utils_impl.py

示例13: testConvertNamedSignatureToSignatureDef

# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import PREDICT_METHOD_NAME [as 別名]
def testConvertNamedSignatureToSignatureDef(self):
    signatures_proto = manifest_pb2.Signatures()
    generic_signature = manifest_pb2.GenericSignature()
    generic_signature.map["input_key"].CopyFrom(
        manifest_pb2.TensorBinding(tensor_name="input"))
    signatures_proto.named_signatures[
        signature_constants.PREDICT_INPUTS].generic_signature.CopyFrom(
            generic_signature)

    generic_signature = manifest_pb2.GenericSignature()
    generic_signature.map["output_key"].CopyFrom(
        manifest_pb2.TensorBinding(tensor_name="output"))
    signatures_proto.named_signatures[
        signature_constants.PREDICT_OUTPUTS].generic_signature.CopyFrom(
            generic_signature)
    signature_def = bundle_shim._convert_named_signatures_to_signature_def(
        signatures_proto)
    self.assertEqual(signature_def.method_name,
                     signature_constants.PREDICT_METHOD_NAME)
    self.assertEqual(len(signature_def.inputs), 1)
    self.assertEqual(len(signature_def.outputs), 1)
    self.assertProtoEquals(
        signature_def.inputs["input_key"],
        meta_graph_pb2.TensorInfo(name="input"))
    self.assertProtoEquals(
        signature_def.outputs["output_key"],
        meta_graph_pb2.TensorInfo(name="output")) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:29,代碼來源:bundle_shim_test.py

示例14: export

# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import PREDICT_METHOD_NAME [as 別名]
def export(model_version, model_dir, sess, inputs, y_op):
    """導出tensorflow_serving可用的模型(Saved Model方式)(推薦)
    prediction_signature必備的三個參數分別是輸入inputs、輸出outputs和方法名method_name,如果缺失方法名將會報錯:“grpc.framework.interfaces.face.face.AbortionError: AbortionError(code=StatusCode.INTERNAL, details="Expected prediction signature method_name to be one of {tensorflow/serving/predict, tensorflow/serving/classify, tensorflow/serving/regress}. Was: ")”。每一個SavedModel關聯著一個獨立的checkpoint。每一個圖元都綁定一個或多個標簽,這些標簽用來明確圖元被加載的方式。標簽隻接受兩種類型:serve或者train,保存時可以同時包含兩個標簽。其中tag_constants.SERVING = "serve",tag_constants.TRAINING = "train"。模型用於TensorFlow Serving時,標簽必須包含serve類型。如果標簽隻包含train類型,TensorFlow Serving加載模型時會報錯:“E tensorflow_serving/core/aspired_versions_manager.cc:351] Servable {name: default version: 2} cannot be loaded: Not found: Could not find meta graph def matching supplied tags.”。定義signature_def_map時注意定義默認服務簽名鍵,如果缺少則會報錯:“grpc.framework.interfaces.face.face.AbortionError: AbortionError(code=StatusCode.FAILED_PRECONDITION, details="Default serving signature key not found.")”。
    """
    if model_version <= 0:
        print('Please specify a positive value for version number.')
        sys.exit()

    path = os.path.dirname(os.path.abspath(model_dir))
    if os.path.isdir(path) == False:
        logging.warning('Path (%s) not exists, making directories...', path)
        os.makedirs(path)

    export_path = os.path.join(
        compat.as_bytes(model_dir),
        compat.as_bytes(str(model_version)))

    if os.path.isdir(export_path) == True:
        logging.warning('Path (%s) exists, removing directories...', export_path)
        shutil.rmtree(export_path)

    builder = saved_model_builder.SavedModelBuilder(export_path)
    tensor_info_x = utils.build_tensor_info(inputs)
    tensor_info_y = utils.build_tensor_info(y_op)

    prediction_signature = signature_def_utils.build_signature_def(
        inputs={'x': tensor_info_x},
        outputs={'y': tensor_info_y},
        method_name=signature_constants.PREDICT_METHOD_NAME)

    builder.add_meta_graph_and_variables(
        sess,
        [tag_constants.SERVING],
        signature_def_map={
            'predict_text': prediction_signature,
            signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: prediction_signature
        })

    builder.save() 
開發者ID:tensorlayer,項目名稱:text-antispam,代碼行數:41,代碼來源:mlp_classifier.py

示例15: export_saved_model

# 需要導入模塊: from tensorflow.python.saved_model import signature_constants [as 別名]
# 或者: from tensorflow.python.saved_model.signature_constants import PREDICT_METHOD_NAME [as 別名]
def export_saved_model(sess, export_path, input_tensor, output_tensor):
    from tensorflow.python.saved_model import builder as saved_model_builder
    from tensorflow.python.saved_model import signature_constants
    from tensorflow.python.saved_model import signature_def_utils
    from tensorflow.python.saved_model import tag_constants
    from tensorflow.python.saved_model import utils
    builder = saved_model_builder.SavedModelBuilder(export_path)

    prediction_signature = signature_def_utils.build_signature_def(
        inputs={'images': utils.build_tensor_info(input_tensor)},
        outputs={
            'scores': utils.build_tensor_info(output_tensor)
        },
        method_name=signature_constants.PREDICT_METHOD_NAME)

    legacy_init_op = tf.group(
        tf.tables_initializer(), name='legacy_init_op')
    builder.add_meta_graph_and_variables(
        sess, [tag_constants.SERVING],
        signature_def_map={
            'predict_images':
                prediction_signature,
        },
        legacy_init_op=legacy_init_op)

    builder.save() 
開發者ID:PacktPublishing,項目名稱:Machine-Learning-with-TensorFlow-1.x,代碼行數:28,代碼來源:models.py


注:本文中的tensorflow.python.saved_model.signature_constants.PREDICT_METHOD_NAME屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。