當前位置: 首頁>>代碼示例>>Python>>正文


Python model_fn.LOSS_METRIC_KEY屬性代碼示例

本文整理匯總了Python中tensorflow.python.estimator.model_fn.LOSS_METRIC_KEY屬性的典型用法代碼示例。如果您正苦於以下問題:Python model_fn.LOSS_METRIC_KEY屬性的具體用法?Python model_fn.LOSS_METRIC_KEY怎麽用?Python model_fn.LOSS_METRIC_KEY使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在tensorflow.python.estimator.model_fn的用法示例。


在下文中一共展示了model_fn.LOSS_METRIC_KEY屬性的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _evaluate_model

# 需要導入模塊: from tensorflow.python.estimator import model_fn [as 別名]
# 或者: from tensorflow.python.estimator.model_fn import LOSS_METRIC_KEY [as 別名]
def _evaluate_model(self,
                      input_fn,
                      hooks=None,
                      checkpoint_path=None,
                      name=''):
    """Evaluates the model using the training.evaluation library."""
    # Check that model has been trained (if nothing has been set explicitly).
    if not checkpoint_path:
      latest_path = saver.latest_checkpoint(self._model_dir)
      if not latest_path:
        raise ValueError('Could not find trained model in model_dir: {}.'.
                         format(self._model_dir))
      checkpoint_path = latest_path

    # Setup output directory.
    eval_dir = os.path.join(self._model_dir, 'eval' if not name else
                            'eval_' + name)

    with ops.Graph().as_default() as g:
      random_seed.set_random_seed(self._config.tf_random_seed)
      global_step_tensor = self._create_and_assert_global_step(g)
      features, labels = self._get_features_and_labels_from_input_fn(
          input_fn, model_fn_lib.ModeKeys.EVAL)
      estimator_spec = self._call_model_fn(
          features, labels, model_fn_lib.ModeKeys.EVAL, self.config)

      if model_fn_lib.LOSS_METRIC_KEY in estimator_spec.eval_metric_ops:
        raise ValueError(
            'Metric with name "%s" is not allowed, because Estimator ' % (
                model_fn_lib.LOSS_METRIC_KEY) +
            'already defines a default metric with the same name.')
      estimator_spec.eval_metric_ops[
          model_fn_lib.LOSS_METRIC_KEY] = metrics_lib.mean(estimator_spec.loss)

      update_op, eval_dict = _extract_metric_update_ops(
          estimator_spec.eval_metric_ops)

      if ops.GraphKeys.GLOBAL_STEP in eval_dict:
        raise ValueError(
            'Metric with name `global_step` is not allowed, because Estimator '
            'already defines a default metric with the same name.')
      eval_dict[ops.GraphKeys.GLOBAL_STEP] = global_step_tensor

      all_hooks = list(hooks or [])
      all_hooks.extend(list(estimator_spec.evaluation_hooks or []))

      eval_results = evaluation._evaluate_once(  # pylint: disable=protected-access
          checkpoint_path=checkpoint_path,
          master=self._config.evaluation_master,
          scaffold=estimator_spec.scaffold,
          eval_ops=update_op,
          final_ops=eval_dict,
          hooks=all_hooks,
          config=self._session_config)

      _write_dict_to_summary(
          output_dir=eval_dir,
          dictionary=eval_results,
          current_global_step=eval_results[ops.GraphKeys.GLOBAL_STEP])

    return eval_results 
開發者ID:cramerlab,項目名稱:boxnet,代碼行數:63,代碼來源:estimator_v2.py


注:本文中的tensorflow.python.estimator.model_fn.LOSS_METRIC_KEY屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。