當前位置: 首頁>>代碼示例>>Python>>正文


Python optimizers.SGD屬性代碼示例

本文整理匯總了Python中tensorflow.keras.optimizers.SGD屬性的典型用法代碼示例。如果您正苦於以下問題:Python optimizers.SGD屬性的具體用法?Python optimizers.SGD怎麽用?Python optimizers.SGD使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在tensorflow.keras.optimizers的用法示例。


在下文中一共展示了optimizers.SGD屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import SGD [as 別名]
def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        with graph.as_default():
            if sess is not None:
                set_session(sess)
            inp = None
            output = None
            if self.shared_network is None:
                inp = Input((self.input_dim,))
                output = self.get_network_head(inp).output
            else:
                inp = self.shared_network.input
                output = self.shared_network.output
            output = Dense(
                self.output_dim, activation=self.activation, 
                kernel_initializer='random_normal')(output)
            self.model = Model(inp, output)
            self.model.compile(
                optimizer=SGD(lr=self.lr), loss=self.loss) 
開發者ID:quantylab,項目名稱:rltrader,代碼行數:21,代碼來源:networks.py

示例2: test_clone_optimizer

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import SGD [as 別名]
def test_clone_optimizer():
    lr, momentum, clipnorm, clipvalue = np.random.random(size=4)
    optimizer = SGD(lr=lr, momentum=momentum, clipnorm=clipnorm, clipvalue=clipvalue)
    clone = clone_optimizer(optimizer)

    assert isinstance(clone, SGD)
    assert K.get_value(optimizer.lr) == K.get_value(clone.lr)
    assert K.get_value(optimizer.momentum) == K.get_value(clone.momentum)
    assert optimizer.clipnorm == clone.clipnorm
    assert optimizer.clipvalue == clone.clipvalue 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:12,代碼來源:test_util.py

示例3: test_clone_optimizer_from_string

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import SGD [as 別名]
def test_clone_optimizer_from_string():
    clone = clone_optimizer('sgd')
    assert isinstance(clone, SGD) 
開發者ID:wau,項目名稱:keras-rl2,代碼行數:5,代碼來源:test_util.py

示例4: main

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import SGD [as 別名]
def main():
    model = create_model(trainable=TRAINABLE)
    model.summary()

    if TRAINABLE:
        model.load_weights(WEIGHTS)

    train_datagen = DataGenerator(TRAIN_CSV)

    val_generator = DataGenerator(VALIDATION_CSV, rnd_rescale=False, rnd_multiply=False, rnd_crop=False, rnd_flip=False, debug=False)
    validation_datagen = Validation(generator=val_generator)

    learning_rate = LEARNING_RATE
    if TRAINABLE:
        learning_rate /= 10

    optimizer = SGD(lr=learning_rate, decay=LR_DECAY, momentum=0.9, nesterov=False)
    model.compile(loss=detection_loss(), optimizer=optimizer, metrics=[])

    checkpoint = ModelCheckpoint("model-{val_iou:.2f}.h5", monitor="val_iou", verbose=1, save_best_only=True,
                                 save_weights_only=True, mode="max")
    stop = EarlyStopping(monitor="val_iou", patience=PATIENCE, mode="max")
    reduce_lr = ReduceLROnPlateau(monitor="val_iou", factor=0.6, patience=5, min_lr=1e-6, verbose=1, mode="max")

    model.fit_generator(generator=train_datagen,
                        epochs=EPOCHS,
                        callbacks=[validation_datagen, checkpoint, reduce_lr, stop],
                        workers=THREADS,
                        use_multiprocessing=MULTITHREADING,
                        shuffle=True,
                        verbose=1) 
開發者ID:lars76,項目名稱:object-localization,代碼行數:33,代碼來源:train.py

示例5: _get_data_and_model

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import SGD [as 別名]
def _get_data_and_model(args):
    # prepare dataset
    if args.method in ['FcDEC', 'FcIDEC', 'FcDEC-DA', 'FcIDEC-DA']:
        x, y = load_data(args.dataset)
    elif args.method in ['ConvDEC', 'ConvIDEC', 'ConvDEC-DA', 'ConvIDEC-DA']:
        x, y = load_data_conv(args.dataset)
    else:
        raise ValueError("Invalid value for method, which can only be in ['FcDEC', 'FcIDEC', 'ConvDEC', 'ConvIDEC', "
                         "'FcDEC-DA', 'FcIDEC-DA', 'ConvDEC-DA', 'ConvIDEC-DA']")

    # prepare optimizer
    if args.optimizer in ['sgd', 'SGD']:
        optimizer = SGD(args.lr, 0.9)
    else:
        optimizer = Adam()

    # prepare the model
    n_clusters = len(np.unique(y))
    if 'FcDEC' in args.method:
        model = FcDEC(dims=[x.shape[-1], 500, 500, 2000, 10], n_clusters=n_clusters)
        model.compile(optimizer=optimizer, loss='kld')
    elif 'FcIDEC' in args.method:
        model = FcIDEC(dims=[x.shape[-1], 500, 500, 2000, 10], n_clusters=n_clusters)
        model.compile(optimizer=optimizer, loss=['kld', 'mse'], loss_weights=[0.1, 1.0])
    elif 'ConvDEC' in args.method:
        model = ConvDEC(input_shape=x.shape[1:], filters=[32, 64, 128, 10], n_clusters=n_clusters)
        model.compile(optimizer=optimizer, loss='kld')
    elif 'ConvIDEC' in args.method:
        model = ConvIDEC(input_shape=x.shape[1:], filters=[32, 64, 128, 10], n_clusters=n_clusters)
        model.compile(optimizer=optimizer, loss=['kld', 'mse'], loss_weights=[0.1, 1.0])
    else:
        raise ValueError("Invalid value for method, which can only be in ['FcDEC', 'FcIDEC', 'ConvDEC', 'ConvIDEC', "
                         "'FcDEC-DA', 'FcIDEC-DA', 'ConvDEC-DA', 'ConvIDEC-DA']")

    # if -DA method, we'll force aug_pretrain and aug_cluster is True
    if '-DA' in args.method:
        args.aug_pretrain = True
        args.aug_cluster = True

    return (x, y), model 
開發者ID:XifengGuo,項目名稱:DEC-DA,代碼行數:42,代碼來源:main.py

示例6: train

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import SGD [as 別名]
def train(args):
    # get data and model
    (x, y), model = _get_data_and_model(args)
    model.model.summary()

    # pretraining
    t0 = time()
    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)
    if args.pretrained_weights is not None and os.path.exists(args.pretrained_weights):  # load pretrained weights
        model.autoencoder.load_weights(args.pretrained_weights)
    else:  # train
        pretrain_optimizer = SGD(1.0, 0.9) if args.method in ['FcDEC', 'FcIDEC', 'FcDEC-DA', 'FcIDEC-DA'] else 'adam'
        model.pretrain(x, y, optimizer=pretrain_optimizer, epochs=args.pretrain_epochs, batch_size=args.batch_size,
                       save_dir=args.save_dir, verbose=args.verbose, aug_pretrain=args.aug_pretrain)
    t1 = time()
    print("Time for pretraining: %ds" % (t1 - t0))

    # clustering
    y_pred = model.fit(x, y=y, maxiter=args.maxiter, batch_size=args.batch_size, update_interval=args.update_interval,
                       save_dir=args.save_dir, aug_cluster=args.aug_cluster)
    if y is not None:
        print('Final: acc=%.4f, nmi=%.4f, ari=%.4f' %
              (metrics.acc(y, y_pred), metrics.nmi(y, y_pred), metrics.ari(y, y_pred)))
    t2 = time()
    print("Time for pretaining, clustering and total: (%ds, %ds, %ds)" % (t1 - t0, t2 - t1, t2 - t0))
    print('='*60) 
開發者ID:XifengGuo,項目名稱:DEC-DA,代碼行數:29,代碼來源:main.py

示例7: start_training

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import SGD [as 別名]
def start_training(working_dir, pre_training_phase=True):
    ensures_dir(CHECKPOINTS_SOFTMAX_DIR)
    ensures_dir(CHECKPOINTS_TRIPLET_DIR)
    batch_input_shape = [None, NUM_FRAMES, NUM_FBANKS, 1]
    if pre_training_phase:
        logger.info('Softmax pre-training.')
        kc = KerasFormatConverter(working_dir)
        num_speakers_softmax = len(kc.categorical_speakers.speaker_ids)
        dsm = DeepSpeakerModel(batch_input_shape, include_softmax=True, num_speakers_softmax=num_speakers_softmax)
        dsm.m.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
        pre_training_checkpoint = load_best_checkpoint(CHECKPOINTS_SOFTMAX_DIR)
        if pre_training_checkpoint is not None:
            initial_epoch = int(pre_training_checkpoint.split('/')[-1].split('.')[0].split('_')[-1])
            logger.info(f'Initial epoch is {initial_epoch}.')
            logger.info(f'Loading softmax checkpoint: {pre_training_checkpoint}.')
            dsm.m.load_weights(pre_training_checkpoint)  # latest one.
        else:
            initial_epoch = 0
        fit_model_softmax(dsm, kc.kx_train, kc.ky_train, kc.kx_test, kc.ky_test, initial_epoch=initial_epoch)
    else:
        logger.info('Training with the triplet loss.')
        dsm = DeepSpeakerModel(batch_input_shape, include_softmax=False)
        triplet_checkpoint = load_best_checkpoint(CHECKPOINTS_TRIPLET_DIR)
        pre_training_checkpoint = load_best_checkpoint(CHECKPOINTS_SOFTMAX_DIR)
        if triplet_checkpoint is not None:
            logger.info(f'Loading triplet checkpoint: {triplet_checkpoint}.')
            dsm.m.load_weights(triplet_checkpoint)
        elif pre_training_checkpoint is not None:
            logger.info(f'Loading pre-training checkpoint: {pre_training_checkpoint}.')
            # If `by_name` is True, weights are loaded into layers only if they share the
            # same name. This is useful for fine-tuning or transfer-learning models where
            # some of the layers have changed.
            dsm.m.load_weights(pre_training_checkpoint, by_name=True)
        dsm.m.compile(optimizer=SGD(), loss=deep_speaker_loss)
        fit_model(dsm, working_dir, NUM_FRAMES) 
開發者ID:milvus-io,項目名稱:bootcamp,代碼行數:37,代碼來源:train.py

示例8: _model

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import SGD [as 別名]
def _model(
        self,
        forecaster_features=1,
        forecaster_hidden_units=(8, 8),
    ):
        # Forecaster
        forecaster_input = Input(
            (forecaster_features, ), name='forecaster_input_features'
        )
        forecaster_output = forecaster_input
        forecaster_dense_units = list(forecaster_hidden_units) + [
            1
        ]  # append final output
        for idx, units in enumerate(forecaster_dense_units):
            forecaster_output = Dense(
                units=units,
                activation='relu',
                name='forecaster_dense_{}'.format(idx)
            )(forecaster_output)
        forecaster_model = Model(
            forecaster_input, forecaster_output, name='Forecaster'
        )
        optimizer = SGD(lr=0.001)
        forecaster_model.compile(loss='mse', optimizer=optimizer)
        return {
            'forecaster': forecaster_model,
        } 
開發者ID:octoenergy,項目名稱:timeserio,代碼行數:29,代碼來源:test_pipeline_validation.py

示例9: _model

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import SGD [as 別名]
def _model(
        self,
        forecaster_features=1,
        forecaster_hidden_units=(8, ),
        lr=0.1,
    ):
        # Forecaster
        forecaster_input = Input(
            (forecaster_features, ), name='forecaster_input_features'
        )
        forecaster_output = forecaster_input
        forecaster_dense_units = list(forecaster_hidden_units) + [
            1
        ]  # append final output
        for idx, units in enumerate(forecaster_dense_units):
            forecaster_output = Dense(
                units=units,
                activation=None,
                name='forecaster_dense_{}'.format(idx)
            )(forecaster_output)
        forecaster_model = Model(
            forecaster_input, forecaster_output, name='Forecaster'
        )
        optimizer = SGD(lr=lr)
        forecaster_model.compile(
            optimizer=optimizer, loss='mse', metrics=['mae']
        )
        return {
            'forecaster': forecaster_model,
        } 
開發者ID:octoenergy,項目名稱:timeserio,代碼行數:32,代碼來源:test_multinetwork.py

示例10: _get_optimizer

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import SGD [as 別名]
def _get_optimizer(optimizer, lr_mult=1.0):
    "Get optimizer with correct learning rate."
    if optimizer == "sgd":
        return optimizers.SGD(lr=0.01*lr_mult)
    elif optimizer == "rmsprop":
        return optimizers.RMSprop(lr=0.001*lr_mult)
    elif optimizer == "adagrad":
        return optimizers.Adagrad(lr=0.01*lr_mult)
    elif optimizer == "adam":
        return optimizers.Adam(lr=0.001*lr_mult)
    elif optimizer == "nadam":
        return optimizers.Nadam(lr=0.002*lr_mult)
    raise NotImplementedError 
開發者ID:asreview,項目名稱:asreview,代碼行數:15,代碼來源:lstm_base.py

示例11: tf_keras_model

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import SGD [as 別名]
def tf_keras_model(data):
    x, y = data
    model = TfSequential()
    model.add(TfDense(3, input_dim=4))
    model.add(TfDense(1))
    model.compile(loss='mean_squared_error', optimizer=TfSGD(learning_rate=0.001))
    model.fit(x, y)
    return model 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:10,代碼來源:test_keras_model_export.py

示例12: get_optimizer

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import SGD [as 別名]
def get_optimizer(optim_type, learning_rate, decay_type='cosine', decay_steps=100000):
    optim_type = optim_type.lower()

    lr_scheduler = get_lr_scheduler(learning_rate, decay_type, decay_steps)

    if optim_type == 'adam':
        optimizer = Adam(learning_rate=lr_scheduler, amsgrad=False)
    elif optim_type == 'rmsprop':
        optimizer = RMSprop(learning_rate=lr_scheduler, rho=0.9, momentum=0.0, centered=False)
    elif optim_type == 'sgd':
        optimizer = SGD(learning_rate=lr_scheduler, momentum=0.0, nesterov=False)
    else:
        raise ValueError('Unsupported optimizer type')

    return optimizer 
開發者ID:david8862,項目名稱:keras-YOLOv3-model-set,代碼行數:17,代碼來源:model_utils.py

示例13: get_optimizer

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import SGD [as 別名]
def get_optimizer(optim_type, learning_rate):
    if optim_type == 'sgd':
        optimizer = SGD(lr=learning_rate, decay=5e-4, momentum=0.9)
    elif optim_type == 'rmsprop':
        optimizer = RMSprop(lr=learning_rate)
    elif optim_type == 'adam':
        optimizer = Adam(lr=learning_rate, decay=5e-4)
    else:
        raise ValueError('Unsupported optimizer type')
    return optimizer 
開發者ID:david8862,項目名稱:keras-YOLOv3-model-set,代碼行數:12,代碼來源:train_imagenet.py

示例14: test_lstm_hourglass_basic

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import SGD [as 別名]
def test_lstm_hourglass_basic(self):
        """
        Test that lstm_hourglass implements the correct parameters
        """

        model = lstm_hourglass(
            n_features=3,
            func="tanh",
            out_func="relu",
            optimizer="SGD",
            optimizer_kwargs={"lr": 0.02, "momentum": 0.001},
            compile_kwargs={"loss": "mae"},
        )

        # Ensure that the input dimension to Keras model matches the number of features.
        self.assertEqual(model.layers[0].input_shape[2], 3)

        # Ensure that the dimension of each encoding layer matches the expected dimension.
        self.assertEqual(
            [model.layers[i].input_shape[2] for i in range(1, 4)], [3, 2, 2]
        )

        # Ensure that the dimension of each decoding layer (excluding last decoding layer)
        # matches the expected dimension.
        self.assertEqual([model.layers[i].input_shape[2] for i in range(4, 6)], [2, 2])

        # Ensure that the dimension of last decoding layer matches the expected dimension.
        self.assertEqual(model.layers[6].input_shape[1], 3)

        # Ensure activation functions in the encoding part (layers 0-2)
        # match expected activation functions
        self.assertEqual(
            [model.layers[i].activation.__name__ for i in range(0, 3)],
            ["tanh", "tanh", "tanh"],
        )

        # Ensure activation functions in the decoding part (layers 3-5)
        # match expected activation functions
        self.assertEqual(
            [model.layers[i].activation.__name__ for i in range(3, 6)],
            ["tanh", "tanh", "tanh"],
        )

        # Ensure activation function for the output layer matches expected activation function
        self.assertEqual(model.layers[6].activation.__name__, "relu")

        # Assert that the expected Keras optimizer is used
        self.assertEqual(model.optimizer.__class__, optimizers.SGD)

        # Assert that the correct loss function is used.
        self.assertEqual(model.loss, "mae") 
開發者ID:equinor,項目名稱:gordo,代碼行數:53,代碼來源:test_lstm_autoencoder.py

示例15: test_lstm_symmetric_basic

# 需要導入模塊: from tensorflow.keras import optimizers [as 別名]
# 或者: from tensorflow.keras.optimizers import SGD [as 別名]
def test_lstm_symmetric_basic(n_features, n_features_out):
    """
    Tests that lstm_symmetric implements the correct parameters
    """
    model = lstm_symmetric(
        n_features=n_features,
        n_features_out=n_features_out,
        lookback_window=3,
        dims=(4, 3, 2, 1),
        funcs=("relu", "relu", "tanh", "tanh"),
        out_func="linear",
        optimizer="SGD",
        optimizer_kwargs={"lr": 0.01},
        loss="mse",
    )

    # Ensure that the input dimension to Keras model matches the number of features.
    assert model.layers[0].input_shape[2] == n_features

    # Ensure that the dimension of each encoding layer matches the expected dimension.
    assert [model.layers[i].input_shape[2] for i in range(1, 5)] == [4, 3, 2, 1]

    # Ensure that the dimension of each decoding layer (excluding last decoding layer)
    # matches the expected dimension.
    assert [model.layers[i].input_shape[2] for i in range(5, 8)] == [1, 2, 3]

    # Ensure that the dimension of last decoding layer matches the expected dimension.
    assert model.layers[8].input_shape[1] == 4

    # Ensure activation functions in the encoding part (layers 0-3)
    # match expected activation functions.
    assert [model.layers[i].activation.__name__ for i in range(0, 4)] == [
        "relu",
        "relu",
        "tanh",
        "tanh",
    ]

    # Ensure activation functions in the decoding part (layers 4-7)
    # match expected activation functions.
    assert [model.layers[i].activation.__name__ for i in range(4, 8)] == [
        "tanh",
        "tanh",
        "relu",
        "relu",
    ]

    # Ensure activation function for the output layer matches expected activation function.
    assert model.layers[8].activation.__name__ == "linear"

    # Assert that the expected Keras optimizer is used
    assert model.optimizer.__class__ == optimizers.SGD

    # Assert that the correct loss function is used.
    assert model.loss == "mse" 
開發者ID:equinor,項目名稱:gordo,代碼行數:57,代碼來源:test_lstm_autoencoder.py


注:本文中的tensorflow.keras.optimizers.SGD屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。