本文整理匯總了Python中tensorflow.keras.layers.LSTM屬性的典型用法代碼示例。如果您正苦於以下問題:Python layers.LSTM屬性的具體用法?Python layers.LSTM怎麽用?Python layers.LSTM使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類tensorflow.keras.layers
的用法示例。
在下文中一共展示了layers.LSTM屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import LSTM [as 別名]
def __init__(self,
in_feats,
out_feats,
aggregator_type,
feat_drop=0.,
bias=True,
norm=None,
activation=None):
super(SAGEConv, self).__init__()
self._in_src_feats, self._in_dst_feats = expand_as_pair(in_feats)
self._out_feats = out_feats
self._aggre_type = aggregator_type
self.norm = norm
self.feat_drop = layers.Dropout(feat_drop)
self.activation = activation
# aggregator type: mean/pool/lstm/gcn
if aggregator_type == 'pool':
self.fc_pool = layers.Dense(self._in_src_feats)
if aggregator_type == 'lstm':
self.lstm = layers.LSTM(units=self._in_src_feats)
if aggregator_type != 'gcn':
self.fc_self = layers.Dense(out_feats, use_bias=bias)
self.fc_neigh = layers.Dense(out_feats, use_bias=bias)
示例2: create_and_append_layer
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import LSTM [as 別名]
def create_and_append_layer(self, layer, rnn_hidden_layers, activation, output_layer=False):
layer_type_name = layer[0].lower()
hidden_size = layer[1]
if output_layer and self.return_final_seq_only: return_sequences = False
else: return_sequences = True
if layer_type_name == "lstm":
rnn_hidden_layers.extend([LSTM(units=hidden_size, kernel_initializer=self.initialiser_function,
return_sequences=return_sequences)])
elif layer_type_name == "gru":
rnn_hidden_layers.extend([GRU(units=hidden_size, kernel_initializer=self.initialiser_function,
return_sequences=return_sequences)])
elif layer_type_name == "linear":
rnn_hidden_layers.extend(
[Dense(units=hidden_size, activation=activation, kernel_initializer=self.initialiser_function)])
else:
raise ValueError("Wrong layer names")
input_dim = hidden_size
return input_dim
示例3: __init__
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import LSTM [as 別名]
def __init__(self,
latent_dim: int,
output_dim: int,
output_activation: str = None,
name: str = 'decoder_lstm') -> None:
"""
LSTM decoder.
Parameters
----------
latent_dim
Latent dimension.
output_dim
Decoder output dimension.
output_activation
Activation used in the Dense output layer.
name
Name of decoder.
"""
super(DecoderLSTM, self).__init__(name=name)
self.decoder_net = LSTM(latent_dim, return_state=True, return_sequences=True)
self.dense = Dense(output_dim, activation=output_activation)
示例4: create_keras_model
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import LSTM [as 別名]
def create_keras_model(input_dim, learning_rate, window_size):
"""Creates Keras model for regression.
Args:
input_dim: How many features the input has
learning_rate: Learning rate for training
Returns:
The compiled Keras model (still needs to be trained)
"""
model = keras.Sequential([
layers.LSTM(4, dropout = 0.2, input_shape = (input_dim, window_size)),
layers.Dense(1)
])
model.compile(loss='mean_squared_error', optimizer=tf.train.AdamOptimizer(
learning_rate=learning_rate))
return model
示例5: create_lstm_layer_2
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import LSTM [as 別名]
def create_lstm_layer_2(self):
ker_in = glorot_uniform(seed=self.seed)
rec_in = Orthogonal(seed=self.seed)
bioutp = Bidirectional(LSTM(self.aggregation_dim,
input_shape=(self.max_sequence_length, 8 * self.perspective_num,),
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
recurrent_dropout=self.recdrop_val,
dropout=self.inpdrop_val,
kernel_initializer=ker_in,
recurrent_initializer=rec_in,
return_sequences=False),
merge_mode='concat',
name="sentence_embedding")
return bioutp
示例6: _lstm_reducer
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import LSTM [as 別名]
def _lstm_reducer(self, nodes):
"""LSTM reducer
NOTE(zihao): lstm reducer with default schedule (degree bucketing)
is slow, we could accelerate this with degree padding in the future.
"""
m = nodes.mailbox['m'] # (B, L, D)
rst = self.lstm(m)
return {'neigh': rst}
示例7: lstm_model
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import LSTM [as 別名]
def lstm_model():
model = Sequential()
model.add(LSTM(16, dropout=0.2, recurrent_dropout=0.2, input_shape=(cfg.pose_vec_dim, cfg.window)))
model.add(Dense(16, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(len(cfg.activity_dict), activation='softmax'))
print(model.summary())
return model
示例8: lstm_model
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import LSTM [as 別名]
def lstm_model():
model = Sequential()
model.add(LSTM(32, dropout=0.2, recurrent_dropout=0.2, input_shape=(pose_vec_dim, window)))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(len(class_names), activation='softmax'))
print(model.summary())
return model
示例9: build_model
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import LSTM [as 別名]
def build_model(self):
model = Sequential()
model.add(LSTM(32, input_shape=self.input_shape, return_sequences=False))
adam = Adam(lr=0.1, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.01, amsgrad=False)
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer=adam)
return model
示例10: load
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import LSTM [as 別名]
def load(input_shape, output_shape, cfg):
nb_lstm_states = int(cfg['nb_lstm_states'])
inputs = KL.Input(shape=input_shape)
x = KL.LSTM(units=nb_lstm_states, unit_forget_bias=True)(inputs)
mu = KL.Dense(1)(x)
std = KL.Dense(1)(x)
std = KL.Activation(tf.exp, name="exponential_activation")(std)
output = KL.Concatenate(axis=-1)([std, mu])
model = KM.Model(inputs=[inputs], outputs=[output])
return model
示例11: _build_model
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import LSTM [as 別名]
def _build_model(self):
# Neural Net for Deep-Q learning Model
# input:state; output:action value
model = Sequential()
model.add(Dense(256, input_dim=self.state_size, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.3))
#model.add((LSTM(128))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse',
optimizer=Adam(lr=self.learning_rate))
return model
示例12: create_lstm_layer_1
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import LSTM [as 別名]
def create_lstm_layer_1(self):
ker_in = glorot_uniform(seed=self.seed)
rec_in = Orthogonal(seed=self.seed)
bioutp = Bidirectional(LSTM(self.hidden_dim,
input_shape=(self.max_sequence_length, self.embedding_dim,),
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
recurrent_dropout=self.recdrop_val,
dropout=self.inpdrop_val,
kernel_initializer=ker_in,
recurrent_initializer=rec_in,
return_sequences=True), merge_mode=None)
return bioutp
示例13: build
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import LSTM [as 別名]
def build(self, hp, inputs=None):
inputs = nest.flatten(inputs)
utils.validate_num_inputs(inputs, 1)
input_node = inputs[0]
shape = input_node.shape.as_list()
if len(shape) != 3:
raise ValueError(
'Expect the input tensor to have '
'at least 3 dimensions for rnn models, '
'but got {shape}'.format(shape=input_node.shape))
feature_size = shape[-1]
output_node = input_node
bidirectional = self.bidirectional
if bidirectional is None:
bidirectional = hp.Boolean('bidirectional', default=True)
layer_type = self.layer_type or hp.Choice('layer_type',
['gru', 'lstm'],
default='lstm')
num_layers = self.num_layers or hp.Choice('num_layers',
[1, 2, 3],
default=2)
rnn_layers = {
'gru': layers.GRU,
'lstm': layers.LSTM
}
in_layer = rnn_layers[layer_type]
for i in range(num_layers):
return_sequences = True
if i == num_layers - 1:
return_sequences = self.return_sequences
if bidirectional:
output_node = layers.Bidirectional(
in_layer(feature_size,
return_sequences=return_sequences))(output_node)
else:
output_node = in_layer(
feature_size,
return_sequences=return_sequences)(output_node)
return output_node
示例14: test_llr
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import LSTM [as 別名]
def test_llr(llr_params):
# LLR parameters
threshold, threshold_perc, return_instance_score, return_feature_score, outlier_type = llr_params
# define model and detector
inputs = Input(shape=(shape[-1] - 1,), dtype=tf.int32)
x = tf.one_hot(tf.cast(inputs, tf.int32), input_dim)
x = LSTM(hidden_dim, return_sequences=True)(x)
logits = Dense(input_dim, activation=None)(x)
model = tf.keras.Model(inputs=inputs, outputs=logits)
od = LLR(threshold=threshold, sequential=True, model=model, log_prob=likelihood_fn)
assert od.threshold == threshold
assert od.meta == {'name': 'LLR', 'detector_type': 'offline', 'data_type': None}
od.fit(
X_train,
loss_fn=loss_fn,
mutate_fn_kwargs={'rate': .5, 'feature_range': (0, input_dim)},
epochs=1,
verbose=False
)
od.infer_threshold(X_val, threshold_perc=threshold_perc)
# iscore_test = od.score(X_test)[1]
# iscore_train = od.score(X_train)[1]
# assert (iscore_test > iscore_train).all()
od_preds = od.predict(X_test,
return_instance_score=return_instance_score,
return_feature_score=return_feature_score,
outlier_type=outlier_type)
assert od_preds['meta'] == od.meta
if outlier_type == 'instance':
assert od_preds['data']['is_outlier'].shape == (X_test.shape[0],)
if return_instance_score:
assert od_preds['data']['is_outlier'].sum() == (od_preds['data']['instance_score']
> od.threshold).astype(int).sum()
elif outlier_type == 'feature':
assert od_preds['data']['is_outlier'].shape == (X_test.shape[0], X_test.shape[1] - 1)
if return_feature_score:
assert od_preds['data']['is_outlier'].sum() == (od_preds['data']['feature_score']
> od.threshold).astype(int).sum()
if return_feature_score:
assert od_preds['data']['feature_score'].shape == (X_test.shape[0], X_test.shape[1] - 1)
else:
assert od_preds['data']['feature_score'] is None
if return_instance_score:
assert od_preds['data']['instance_score'].shape == (X_test.shape[0],)
else:
assert od_preds['data']['instance_score'] is None
示例15: main
# 需要導入模塊: from tensorflow.keras import layers [as 別名]
# 或者: from tensorflow.keras.layers import LSTM [as 別名]
def main():
numpy.random.seed(7)
# data. definition of the problem.
seq_length = 20
x_train, y_train = task_add_two_numbers_after_delimiter(20_000, seq_length)
x_val, y_val = task_add_two_numbers_after_delimiter(4_000, seq_length)
# just arbitrary values. it's for visual purposes. easy to see than random values.
test_index_1 = 4
test_index_2 = 9
x_test, _ = task_add_two_numbers_after_delimiter(10, seq_length, 0, test_index_1, test_index_2)
# x_test_mask is just a mask that, if applied to x_test, would still contain the information to solve the problem.
# we expect the attention map to look like this mask.
x_test_mask = np.zeros_like(x_test[..., 0])
x_test_mask[:, test_index_1:test_index_1 + 1] = 1
x_test_mask[:, test_index_2:test_index_2 + 1] = 1
# model
i = Input(shape=(seq_length, 1))
x = LSTM(100, return_sequences=True)(i)
x = attention_3d_block(x)
x = Dropout(0.2)(x)
x = Dense(1, activation='linear')(x)
model = Model(inputs=[i], outputs=[x])
model.compile(loss='mse', optimizer='adam')
print(model.summary())
output_dir = 'task_add_two_numbers'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
max_epoch = int(sys.argv[1]) if len(sys.argv) > 1 else 200
class VisualiseAttentionMap(Callback):
def on_epoch_end(self, epoch, logs=None):
attention_map = get_activations(model, x_test, layer_name='attention_weight')['attention_weight']
# top is attention map.
# bottom is ground truth.
plt.imshow(np.concatenate([attention_map, x_test_mask]), cmap='hot')
iteration_no = str(epoch).zfill(3)
plt.axis('off')
plt.title(f'Iteration {iteration_no} / {max_epoch}')
plt.savefig(f'{output_dir}/epoch_{iteration_no}.png')
plt.close()
plt.clf()
model.fit(x_train, y_train, validation_data=(x_val, y_val), epochs=max_epoch,
batch_size=64, callbacks=[VisualiseAttentionMap()])