當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.VERSION屬性代碼示例

本文整理匯總了Python中tensorflow.VERSION屬性的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.VERSION屬性的具體用法?Python tensorflow.VERSION怎麽用?Python tensorflow.VERSION使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在tensorflow的用法示例。


在下文中一共展示了tensorflow.VERSION屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _test_range

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VERSION [as 別名]
def _test_range(start, limit, delta):
    # tflite 1.13 convert method does not accept empty shapes
    if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'):
        tf.reset_default_graph()
        with tf.Graph().as_default():
            start_scalar, limit_scalar, delta_scalar = \
                tf.placeholder(dtype=start.dtype, shape=(), name="start"), \
                tf.placeholder(dtype=limit.dtype, shape=(), name="limit"), \
                tf.placeholder(dtype=delta.dtype, shape=(), name="delta")

            out = tf.range(start_scalar, limit_scalar, delta_scalar, name="range")

            compare_tflite_with_tvm(
                [start, limit, delta],
                ["start", "limit", "delta"],
                [start_scalar, limit_scalar, delta_scalar],
                [out],
                mode="vm",
                quantized=False
        ) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:22,代碼來源:test_forward.py

示例2: _test_range_default

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VERSION [as 別名]
def _test_range_default():
    # tflite 1.13 convert method does not accept empty shapes
    if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'):
        tf.reset_default_graph()
        with tf.Graph().as_default():
            inputs = [
                tf.placeholder(dtype=tf.int32, shape=(), name="p1"),
                tf.placeholder(dtype=tf.int32, shape=(), name="p2")
            ]
            outputs = [
                tf.range(start = inputs[0], limit = inputs[1]), # use default delta
                tf.range(start = inputs[1]) # use start as limit with 0 as the first item in the range
            ]

            compare_tflite_with_tvm(
                [np.int32(1), np.int32(18)],
                ["p1", "p2"],
                inputs,
                outputs,
                mode="vm"
        ) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:23,代碼來源:test_forward.py

示例3: test_all_unary_elemwise

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VERSION [as 別名]
def test_all_unary_elemwise():
    _test_forward_unary_elemwise(_test_abs)
    _test_forward_unary_elemwise(_test_floor)
    _test_forward_unary_elemwise(_test_exp)
    _test_forward_unary_elemwise(_test_log)
    _test_forward_unary_elemwise(_test_sin)
    _test_forward_unary_elemwise(_test_sqrt)
    _test_forward_unary_elemwise(_test_rsqrt)
    _test_forward_unary_elemwise(_test_neg)
    _test_forward_unary_elemwise(_test_square)
    # ceil and cos come with TFLite 1.14.0.post1 fbs schema
    if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'):
        _test_forward_unary_elemwise(_test_ceil)
        _test_forward_unary_elemwise(_test_cos)
        _test_forward_unary_elemwise(_test_round)
        # This fails with TF and Tflite 1.15.2, this could not have been tested
        # in CI or anywhere else. The failure mode is that we see a backtrace
        # from the converter that we need to provide a custom Tan operator
        # implementation.
        #_test_forward_unary_elemwise(_test_tan)
        _test_forward_unary_elemwise(_test_elu)

#######################################################################
# Element-wise
# ------------ 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:27,代碼來源:test_forward.py

示例4: test_forward_add_n

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VERSION [as 別名]
def test_forward_add_n():
    if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'):
        x = np.random.randint(1, 100, size=(3, 3, 3), dtype=np.int32)
        y = np.random.randint(1, 100, size=(3, 3, 3), dtype=np.int32)
        z = np.random.randint(1, 100, size=(3, 3, 3), dtype=np.int32)
        m, n, o = x.astype(np.float32), y.astype(np.float32), z.astype(np.float32)
        in0 = x
        in1 = [x, y]
        in2 = (x, y, z)
        in3 = m
        in4 = [m, n]
        in5 = (m, n, o)
        _test_forward_add_n(in0)
        _test_forward_add_n(in1)
        _test_forward_add_n(in2)
        _test_forward_add_n(in3)
        _test_forward_add_n(in4)
        _test_forward_add_n(in5)


#######################################################################
# Logical operators
# ----------------- 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:25,代碼來源:test_forward.py

示例5: _test_fill

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VERSION [as 別名]
def _test_fill(dims, value_data, value_dtype):
    """ Use the fill op to create a tensor of value_data with constant dims."""

    value_data = np.array(value_data, dtype=value_dtype)
    # TF 1.13 TFLite convert method does not accept empty shapes
    if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'):
        with tf.Graph().as_default():
            value = array_ops.placeholder(dtype=value_dtype, name="value", shape=[])
            out = tf.fill(dims,  value)
            compare_tflite_with_tvm([value_data], ["value"], [value], [out])

    with tf.Graph().as_default():
        input1 = array_ops.placeholder(dtype=value_dtype, name="input1", shape=dims)
        # Fill op gets converted to static tensor during conversion
        out = tf.fill(dims,  value_data)
        out1 = tf.add(out, input1)
        input1_data = np.random.uniform(0, 5, size=dims).astype(value_dtype)
        compare_tflite_with_tvm([input1_data], ["input1"], [input1], [out1]) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:20,代碼來源:test_forward.py

示例6: _test_sparse_to_dense

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VERSION [as 別名]
def _test_sparse_to_dense(sparse_indices, sparse_values, default_value, output_shape):
    # tflite 1.13 convert method does not accept empty shapes
    if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'):
        with tf.Graph().as_default():
            indices = tf.placeholder(shape=sparse_indices.shape, dtype=str(sparse_indices.dtype), name="indices")
            values = tf.placeholder(shape=sparse_values.shape, dtype=str(sparse_values.dtype), name="values")
            oshape = tf.constant(output_shape, shape=output_shape.shape, dtype=str(output_shape.dtype))

            if default_value == None:
                output = tf.sparse_to_dense(indices, oshape, values)
                compare_tflite_with_tvm(
                    [sparse_indices, sparse_values],
                    ["indices", "values"],
                    [indices, values],
                    [output]
                )
            else:
                dv = tf.placeholder(shape=(), dtype=str(default_value.dtype), name="default_value")
                output = tf.sparse_to_dense(indices, oshape, values, dv)
                compare_tflite_with_tvm(
                    [sparse_indices, sparse_values, default_value],
                    ["indices", "values", "default_value"],
                    [indices, values, dv],
                    [output]
                ) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:27,代碼來源:test_forward.py

示例7: test_forward_mobilenet_v3

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VERSION [as 別名]
def test_forward_mobilenet_v3():
    """Test the Mobilenet V3 TF Lite model."""
    # In MobilenetV3, some ops are not supported before tf 1.15 fbs schema
    if package_version.parse(tf.VERSION) < package_version.parse('1.15.0'):
        return
    tflite_model_file = tf_testing.get_workload_official(
        "https://storage.googleapis.com/mobilenet_v3/checkpoints/v3-large_224_1.0_float.tgz",
        "v3-large_224_1.0_float/v3-large_224_1.0_float.tflite")
    with open(tflite_model_file, "rb") as f:
        tflite_model_buf = f.read()
    data = np.random.uniform(size=(1, 224, 224, 3)).astype('float32')
    tflite_output = run_tflite_graph(tflite_model_buf, data)
    tvm_output = run_tvm_graph(tflite_model_buf, data, 'input')
    tvm.testing.assert_allclose(np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]),
                                rtol=1e-5, atol=1e-5)

#######################################################################
# Inception
# --------- 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:21,代碼來源:test_forward.py

示例8: test_forward_tflite2_qnn_inception_v1

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VERSION [as 別名]
def test_forward_tflite2_qnn_inception_v1():
    """Test the Quantized TFLite version 2.1.0 Inception V1 model."""
    if package_version.parse(tf.VERSION) >= package_version.parse('2.1.0'):
        tflite_model_file = download_testdata(
            "https://raw.githubusercontent.com/dmlc/web-data/master/tensorflow/models/Quantized/inception_v1_quantized.tflite",
            "inception_v1_quantized.tflite")
        with open(tflite_model_file, "rb") as f:
            tflite_model_buf = f.read()

        data = pre_processed_image(224, 224)

        tflite_output = run_tflite_graph(tflite_model_buf, data)
        tflite_predictions = np.squeeze(tflite_output)
        tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1]
        tvm_output = run_tvm_graph(tflite_model_buf, np.array(data), 'input_1')
        tvm_predictions = np.squeeze(tvm_output)
        tvm_sorted_labels = tvm_predictions.argsort()[-3:][::-1]
        tvm.testing.assert_allclose(tvm_sorted_labels, tflite_sorted_labels) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:20,代碼來源:test_forward.py

示例9: test_forward_tflite2_qnn_mobilenet_v2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VERSION [as 別名]
def test_forward_tflite2_qnn_mobilenet_v2():
    """Test the Quantized TFLite version 2.1.0 Mobilenet V2 model."""
    if package_version.parse(tf.VERSION) >= package_version.parse('2.1.0'):
        tflite_model_file = download_testdata(
            "https://raw.githubusercontent.com/dmlc/web-data/master/tensorflow/models/Quantized/mobilenet_v2_quantized.tflite",
            "mobilenet_v2_quantized.tflite")
        with open(tflite_model_file, "rb") as f:
            tflite_model_buf = f.read()

        data = pre_processed_image(224, 224)

        tflite_output = run_tflite_graph(tflite_model_buf, data)
        tflite_predictions = np.squeeze(tflite_output)
        tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1]
        tvm_output = run_tvm_graph(tflite_model_buf, np.array(data), 'input_1')
        tvm_predictions = np.squeeze(tvm_output)
        tvm_sorted_labels = tvm_predictions.argsort()[-3:][::-1]
        tvm.testing.assert_allclose(tvm_sorted_labels, tflite_sorted_labels)


#######################################################################
# Quantized SSD Mobilenet
# ----------------------- 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:25,代碼來源:test_forward.py

示例10: test_tensor_array_size

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VERSION [as 別名]
def test_tensor_array_size():
    if package_version.parse(tf.VERSION) >= package_version.parse('1.15.0'):
            pytest.skip("Needs fixing for tflite >= 1.15.0")

    def run(dtype_str, infer_shape):
        with tf.Graph().as_default():
            dtype =  tf_dtypes[dtype_str]
            np_data = np.array([[1.0, 2.0], [3.0, 4.0]]).astype(dtype_str)
            in_data = [np_data, np_data]
            t1 = tf.constant(np_data, dtype=dtype)
            t2 = tf.constant(np_data, dtype=dtype)
            ta1 = tf.TensorArray(dtype=dtype, size=2, infer_shape=infer_shape)
            ta2 = ta1.write(0, t1)
            ta3 = ta2.write(1, t2)
            out = ta3.size()
            g = tf.get_default_graph()
            compare_tf_with_tvm([], [], 'TensorArraySizeV3:0', mode='debug')
    for dtype in ["float32", "int8"]:
        run(dtype, False)
        run(dtype, True) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:22,代碼來源:test_forward.py

示例11: test_tensor_array_stack

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VERSION [as 別名]
def test_tensor_array_stack():
    def run(dtype_str, infer_shape):
        if package_version.parse(tf.VERSION) >= package_version.parse('1.15.0'):
            pytest.skip("Needs fixing for tflite >= 1.15.0")

        with tf.Graph().as_default():
            dtype =  tf_dtypes[dtype_str]
            t = tf.constant(np.array([[1.0], [2.0], [3.0]]).astype(dtype_str))
            scatter_indices = tf.constant([2, 1, 0])
            ta1 = tf.TensorArray(dtype=dtype, size=3, infer_shape=infer_shape)
            ta2 = ta1.scatter(scatter_indices, t)
            t1 = ta2.stack()
            print(t1)
            g = tf.get_default_graph()

            compare_tf_with_tvm([], [], ['TensorArrayStack/TensorArrayGatherV3:0'], mode='vm')
    for dtype in ["float32", "int8"]:
        run(dtype, True) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:20,代碼來源:test_forward.py

示例12: test_tensor_array_unstack

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VERSION [as 別名]
def test_tensor_array_unstack():
    def run(dtype_str, input_shape, infer_shape):
        if package_version.parse(tf.VERSION) >= package_version.parse('1.15.0'):
            pytest.skip("Needs fixing for tflite >= 1.15.0")

        with tf.Graph().as_default():
            dtype = tf_dtypes[dtype_str]
            t = tf.constant(np.random.choice([0, 1, 2, 3],
                                             size=input_shape).astype(dtype.name))
            ta1 = tf.TensorArray(dtype=dtype, infer_shape=infer_shape, size=input_shape[0])
            ta2 = ta1.unstack(t)
            out0 = ta2.size()
            out1 = ta2.read(0)
            compare_tf_with_tvm([], [], 'TensorArraySizeV3:0', mode='debug')
            compare_tf_with_tvm([], [], 'TensorArrayReadV3:0', mode='debug')
    for dtype in ["float32", "int8"]:
        run(dtype, (5,), False)
        run(dtype, (5, 5), True)
        run(dtype, (5, 5, 5), False)
        run(dtype, (5, 5, 5, 5), True)


#######################################################################
# ConcatV2
# -------- 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:27,代碼來源:test_forward.py

示例13: _collect_tensorflow_info

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VERSION [as 別名]
def _collect_tensorflow_info(run_info):
  run_info["tensorflow_version"] = {
      "version": tf.VERSION, "git_hash": tf.GIT_VERSION} 
開發者ID:rockyzhengwu,項目名稱:nsfw,代碼行數:5,代碼來源:logger.py

示例14: compute_consistent_plane_frame

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VERSION [as 別名]
def compute_consistent_plane_frame(normal):
    # Input:  normal is Bx3
    # Returns: x_axis, y_axis, both of dimension Bx3
    batch_size = tf.shape(normal)[0]
    candidate_axes = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] # Actually, 2 should be enough. This may still cause singularity TODO!!!
    y_axes = []
    for tmp_axis in candidate_axes:
        tf_axis = tf.tile(tf.expand_dims(tf.constant(dtype=tf.float32, value=tmp_axis), axis=0), [batch_size, 1]) # Bx3
        y_axes.append(tf.cross(normal, tf_axis))
    y_axes = tf.stack(y_axes, axis=0) # QxBx3
    y_axes_norm = tf.norm(y_axes, axis=2) # QxB
    # choose the axis with largest norm
    y_axes_chosen_idx = tf.argmax(y_axes_norm, axis=0) # B
    # y_axes_chosen[b, :] = y_axes[y_axes_chosen_idx[b], b, :]
    indices_0 = tf.tile(tf.expand_dims(y_axes_chosen_idx, axis=1), [1, 3]) # Bx3
    indices_1 = tf.tile(tf.expand_dims(tf.range(batch_size), axis=1), [1, 3]) # Bx3
    indices_2 = tf.tile(tf.expand_dims(tf.range(3), axis=0), [batch_size, 1]) # Bx3
    indices = tf.stack([tf.cast(indices_0, tf.int32), indices_1, indices_2], axis=2) # Bx3x3
    y_axes = tf.gather_nd(y_axes, indices=indices) # Bx3
    if tf.VERSION == '1.4.1':
        y_axes = tf.nn.l2_normalize(y_axes, dim=1)
    else:
        y_axes = tf.nn.l2_normalize(y_axes, axis=1)
    x_axes = tf.cross(y_axes, normal) # Bx3

    return x_axes, y_axes 
開發者ID:lingxiaoli94,項目名稱:SPFN,代碼行數:28,代碼來源:geometry_utils.py

示例15: testVersion

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VERSION [as 別名]
def testVersion(self):
    self.assertEqual(type(tf.__version__), str)
    self.assertEqual(type(tf.VERSION), str)
    # This pattern will need to grow as we include alpha, builds, etc.
    self.assertRegexpMatches(tf.__version__, r'^\d+\.\d+\.\w+$')
    self.assertRegexpMatches(tf.VERSION, r'^\d+\.\d+\.\w+$') 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:8,代碼來源:versions_test.py


注:本文中的tensorflow.VERSION屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。