本文整理匯總了Python中talib.MFI屬性的典型用法代碼示例。如果您正苦於以下問題:Python talib.MFI屬性的具體用法?Python talib.MFI怎麽用?Python talib.MFI使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類talib
的用法示例。
在下文中一共展示了talib.MFI屬性的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: add_MFI
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import MFI [as 別名]
def add_MFI(self, timeperiod=14,
type='line', color='secondary', **kwargs):
"""Money Flow Index."""
if not (self.has_high and self.has_low and
self.has_close and self.has_volume):
raise Exception()
utils.kwargs_check(kwargs, VALID_TA_KWARGS)
if 'kind' in kwargs:
type = kwargs['kind']
name = 'MFI({})'.format(str(timeperiod))
self.sec[name] = dict(type=type, color=color)
self.ind[name] = talib.MFI(self.df[self.hi].values,
self.df[self.lo].values,
self.df[self.cl].values,
self.df[self.vo].values,
timeperiod)
示例2: mfi
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import MFI [as 別名]
def mfi(candles: np.ndarray, period=14, sequential=False) -> Union[float, np.ndarray]:
"""
MFI - Money Flow Index
:param candles: np.ndarray
:param period: int - default=14
:param sequential: bool - default=False
:return: float | np.ndarray
"""
if not sequential and len(candles) > 240:
candles = candles[-240:]
res = talib.MFI(candles[:, 3], candles[:, 4], candles[:, 2], candles[:, 5], timeperiod=period)
if sequential:
return res
else:
return None if np.isnan(res[-1]) else res[-1]
示例3: get_indicator
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import MFI [as 別名]
def get_indicator(df, indicator):
ret_df = df
if 'MACD' in indicator:
macd, macdsignal, macdhist = ta.MACD(df.close.values, fastperiod=12, slowperiod=26, signalperiod=9)
ret_df = KlineData._merge_dataframe(pd.DataFrame([macd, macdsignal, macdhist]).T.rename(columns={0: "macddif", 1: "macddem", 2: "macdhist"}), ret_df)
ret_df = KlineData._merge_dataframe(line_intersections(ret_df, columns=['macddif', 'macddem']), ret_df)
if 'MFI' in indicator:
real = ta.MFI(df.high.values, df.low.values, df.close.values, df.volume.values, timeperiod=14)
ret_df = KlineData._merge_dataframe(pd.DataFrame([real]).T.rename(columns={0: "mfi"}), ret_df)
if 'ATR' in indicator:
real = ta.NATR(df.high.values, df.low.values, df.close.values, timeperiod=14)
ret_df = KlineData._merge_dataframe(pd.DataFrame([real]).T.rename(columns={0: "atr"}), ret_df)
if 'ROCR' in indicator:
real = ta.ROCR(df.close.values, timeperiod=10)
ret_df = KlineData._merge_dataframe(pd.DataFrame([real]).T.rename(columns={0: "rocr"}), ret_df)
ret_df['date'] = pd.to_datetime(ret_df['date'], format='%Y-%m-%d')
return ret_df
示例4: calculate_mfi
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import MFI [as 別名]
def calculate_mfi(self, period_name, highs, lows, closing_prices, volumes):
mfi = talib.MFI(highs, lows, closing_prices, volumes)
self.current_indicators[period_name]['mfi'] = mfi[-1]
示例5: mfi
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import MFI [as 別名]
def mfi(self, sym, frequency, *args, **kwargs):
if not self.kbars_ready(sym, frequency):
return []
highs = self.high(sym, frequency)
lows = self.low(sym, frequency)
closes = self.close(sym, frequency)
volumes = self.volume(sym, frequency)
v = ta.MFI(highs, lows, closes, volumes, *args, **kwargs)
return v
示例6: test_mfi
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import MFI [as 別名]
def test_mfi():
'''test TA.MFI'''
mfi = TA.MFI(ohlc, 9)
talib_mfi = talib.MFI(ohlc['high'], ohlc['low'], ohlc['close'], ohlc['volume'], 9)
assert int(talib_mfi[-1]) == int(mfi.values[-1])
示例7: MFI
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import MFI [as 別名]
def MFI(frame, n=14, high_col='high', low_col='low', close_col='close', vol_col='Volume'):
"""money flow inedx"""
return _frame_to_series(frame, [high_col, low_col, close_col, vol_col], talib.MFI, n)
示例8: test_mfi
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import MFI [as 別名]
def test_mfi(self):
result = pandas_ta.mfi(self.high, self.low, self.close, self.volume_)
self.assertIsInstance(result, Series)
self.assertEqual(result.name, 'MFI_14')
try:
expected = tal.MFI(self.high, self.low, self.close, self.volume_)
pdt.assert_series_equal(result, expected, check_names=False)
except AssertionError as ae:
try:
corr = pandas_ta.utils.df_error_analysis(result, expected, col=CORRELATION)
self.assertGreater(corr, CORRELATION_THRESHOLD)
except Exception as ex:
error_analysis(result, CORRELATION, ex)
示例9: MFI
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import MFI [as 別名]
def MFI(data, **kwargs):
_check_talib_presence()
popen, phigh, plow, pclose, pvolume = _extract_ohlc(data)
return talib.MFI(popen, phigh, plow, pclose, pvolume, **kwargs)