本文整理匯總了Python中talib.ADX屬性的典型用法代碼示例。如果您正苦於以下問題:Python talib.ADX屬性的具體用法?Python talib.ADX怎麽用?Python talib.ADX使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類talib
的用法示例。
在下文中一共展示了talib.ADX屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: results
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import ADX [as 別名]
def results(self, data_frame):
try:
adx = talib.ADX(data_frame['%s_High' %self.symbol].values,
data_frame['%s_Low' %self.symbol].values,
data_frame['%s_Close' %self.symbol].values,
timeperiod=self.period)
plus_di = talib.PLUS_DI(data_frame['%s_High' %self.symbol].values,
data_frame['%s_Low' %self.symbol].values,
data_frame['%s_Close' %self.symbol].values,
timeperiod=self.period)
minus_di = talib.MINUS_DI(data_frame['%s_High' %self.symbol].values,
data_frame['%s_Low' %self.symbol].values,
data_frame['%s_Close' %self.symbol].values,
timeperiod=self.period)
data_frame[self.value] = adx
data_frame[self.plus_di] = plus_di
data_frame[self.minus_di] = minus_di
except KeyError:
data_frame[self.value] = np.nan
data_frame[self.plus_di] = np.nan
data_frame[self.minus_di] = np.nan
示例2: add_ADX
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import ADX [as 別名]
def add_ADX(self, timeperiod=14,
type='line', color='secondary', **kwargs):
"""Average Directional Movement Index."""
if not (self.has_high and self.has_low and self.has_close):
raise Exception()
utils.kwargs_check(kwargs, VALID_TA_KWARGS)
if 'kind' in kwargs:
type = kwargs['kind']
name = 'ADX({})'.format(str(timeperiod))
self.sec[name] = dict(type=type, color=color)
self.ind[name] = talib.ADX(self.df[self.hi].values,
self.df[self.lo].values,
self.df[self.cl].values,
timeperiod)
示例3: adx
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import ADX [as 別名]
def adx(candles: np.ndarray, period=14, sequential=False) -> Union[float, np.ndarray]:
"""
ADX - Average Directional Movement Index
:param candles: np.ndarray
:param period: int - default=14
:param sequential: bool - default=False
:return: float | np.ndarray
"""
if not sequential and len(candles) > 240:
candles = candles[-240:]
res = talib.ADX(candles[:, 3], candles[:, 4], candles[:, 2], timeperiod=period)
if sequential:
return res
else:
return None if np.isnan(res[-1]) else res[-1]
示例4: calculate_adx
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import ADX [as 別名]
def calculate_adx(self, period_name, close):
adx = talib.ADX(self.highs, self.lows, close, timeperiod=14)
self.current_indicators[period_name]['adx'] = adx[-1]
示例5: TA_ADX
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import ADX [as 別名]
def TA_ADX(high, low, close, timeperiod=14) -> np.ndarray:
"""
ADX - Average Directional Movement Index
"""
real = talib.ADX(high, low, close, timeperiod=timeperiod)
return np.c_[real]
示例6: TA_ADXR
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import ADX [as 別名]
def TA_ADXR(high, low, close, timeperiod=14) -> np.ndarray:
"""
名稱:平均趨向指數的趨向指數
簡介:使用ADXR指標,指標判斷ADX趨勢。
ADXR - Average Directional Movement Index Rating
"""
real = talib.ADXR(high, low, close, timeperiod=timeperiod)
return np.c_[real]
示例7: Volume_HMA
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import ADX [as 別名]
def Volume_HMA(klines, period=5):
"""
交易量加權船型移動平均線 HMA,方向指示性類似於 Moving Average ADX,但它們通過不同的指標實現。
Hull Moving Average with Volume weighted, diretions similar like ADX_MA
Source: https://www.tradingview.com/script/XTViDINu-VHMA/
Translator: 阿財(Rgveda@github)(4910163#qq.com)
Parameters
----------
klines : (N,) array_like
傳入 OHLC Kline 序列。
The OHLC Kline.
period : int or None, optional
DI 統計周期 默認值為 10
DI Length period. Default value is 10.
Returns
-------
vhma, Trend : ndarray
vhma 指標和 Trend 趨勢指示方向 (-1/-2, 0, 1/2) 分別代表 (下跌, 無明顯趨勢, 上漲)
the vhma indicator and thread directions sequence. (-1/-2, 0, 1/2) means for (Neagtive, No Trend, Positive)
"""
src1 = talib.EMA(klines.close * klines.volume, period) / talib.EMA(klines.volume, period)
vhma = TA_HMA(src1, period)
vhma_s = pd.Series(vhma)
lineDirection = np.where((vhma > vhma_s.shift(1).values), 1, -1)
hu = np.where((vhma > vhma_s.shift(2).values), 1, -1)
return vhma, lineDirection + hu
示例8: ADX
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import ADX [as 別名]
def ADX(DataFrame, N=14):
res = talib.ADX(DataFrame.high.values, DataFrame.low.values, DataFrame.close.values, N)
return pd.DataFrame({'ADX': res}, index=DataFrame.index)
示例9: adx
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import ADX [as 別名]
def adx(self, sym, frequency, period=14):
if not self.kbars_ready(sym, frequency):
return []
highs = self.high(sym, frequency)
lows = self.low(sym, frequency)
closes = self.close(sym, frequency)
return ta.ADX(highs, lows, closes, timeperiod=period)
示例10: __str__
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import ADX [as 別名]
def __str__(self):
return 'ADX(symbol=%s, period=%s)' %(self.symbol, self.period)
示例11: technical_indicators_df
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import ADX [as 別名]
def technical_indicators_df(self, daily_data):
"""
Assemble a dataframe of technical indicator series for a single stock
"""
o = daily_data['Open'].values
c = daily_data['Close'].values
h = daily_data['High'].values
l = daily_data['Low'].values
v = daily_data['Volume'].astype(float).values
# define the technical analysis matrix
# Most data series are normalized by their series' mean
ta = pd.DataFrame()
ta['MA5'] = tb.MA(c, timeperiod=5) / tb.MA(c, timeperiod=5).mean()
ta['MA10'] = tb.MA(c, timeperiod=10) / tb.MA(c, timeperiod=10).mean()
ta['MA20'] = tb.MA(c, timeperiod=20) / tb.MA(c, timeperiod=20).mean()
ta['MA60'] = tb.MA(c, timeperiod=60) / tb.MA(c, timeperiod=60).mean()
ta['MA120'] = tb.MA(c, timeperiod=120) / tb.MA(c, timeperiod=120).mean()
ta['MA5'] = tb.MA(v, timeperiod=5) / tb.MA(v, timeperiod=5).mean()
ta['MA10'] = tb.MA(v, timeperiod=10) / tb.MA(v, timeperiod=10).mean()
ta['MA20'] = tb.MA(v, timeperiod=20) / tb.MA(v, timeperiod=20).mean()
ta['ADX'] = tb.ADX(h, l, c, timeperiod=14) / tb.ADX(h, l, c, timeperiod=14).mean()
ta['ADXR'] = tb.ADXR(h, l, c, timeperiod=14) / tb.ADXR(h, l, c, timeperiod=14).mean()
ta['MACD'] = tb.MACD(c, fastperiod=12, slowperiod=26, signalperiod=9)[0] / \
tb.MACD(c, fastperiod=12, slowperiod=26, signalperiod=9)[0].mean()
ta['RSI'] = tb.RSI(c, timeperiod=14) / tb.RSI(c, timeperiod=14).mean()
ta['BBANDS_U'] = tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[0] / \
tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[0].mean()
ta['BBANDS_M'] = tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[1] / \
tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[1].mean()
ta['BBANDS_L'] = tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[2] / \
tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[2].mean()
ta['AD'] = tb.AD(h, l, c, v) / tb.AD(h, l, c, v).mean()
ta['ATR'] = tb.ATR(h, l, c, timeperiod=14) / tb.ATR(h, l, c, timeperiod=14).mean()
ta['HT_DC'] = tb.HT_DCPERIOD(c) / tb.HT_DCPERIOD(c).mean()
ta["High/Open"] = h / o
ta["Low/Open"] = l / o
ta["Close/Open"] = c / o
self.ta = ta
示例12: adx
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import ADX [as 別名]
def adx(self, n, array=False):
"""
ADX.
"""
result = talib.ADX(self.high, self.low, self.close, n)
if array:
return result
return result[-1]
示例13: adx
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import ADX [as 別名]
def adx(high, low, close, period=14):
return talib.ADX(high, low, close, period)
示例14: test_adx
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import ADX [as 別名]
def test_adx():
'''test TA.ADX'''
adx = TA.ADX(ohlc, period=12)
ta_adx = talib.ADX(ohlc["high"], ohlc["low"], ohlc["close"], timeperiod=12)
assert int(ta_adx[-1]) == int(adx.values[-1])
示例15: adx
# 需要導入模塊: import talib [as 別名]
# 或者: from talib import ADX [as 別名]
def adx(self, n, array=False):
"""ADX指標"""
result = talib.ADX(self.high, self.low, self.close, n)
if array:
return result
return result[-1]
# ----------------------------------------------------------------------