本文整理匯總了Python中sympy.I屬性的典型用法代碼示例。如果您正苦於以下問題:Python sympy.I屬性的具體用法?Python sympy.I怎麽用?Python sympy.I使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類sympy
的用法示例。
在下文中一共展示了sympy.I屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: sympy_to_grim
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import I [as 別名]
def sympy_to_grim(expr, **kwargs):
import sympy
assert isinstance(expr, sympy.Expr)
if expr.is_Integer:
return Expr(int(expr))
if expr.is_Symbol:
return Expr(symbol_name=expr.name)
if expr is sympy.pi:
return Pi
if expr is sympy.E:
return ConstE
if expr is sympy.I:
return ConstI
if expr.is_Add:
args = [sympy_to_grim(x, **kwargs) for x in expr.args]
return Add(*args)
if expr.is_Mul:
args = [sympy_to_grim(x, **kwargs) for x in expr.args]
return Mul(*args)
if expr.is_Pow:
args = [sympy_to_grim(x, **kwargs) for x in expr.args]
b, e = args
return Pow(b, e)
raise NotImplementedError("converting %s to Grim", type(expr))
示例2: test_conv10
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import I [as 別名]
def test_conv10():
A = DenseMatrix(1, 4, [Integer(1), Integer(2), Integer(3), Integer(4)])
assert (A._sympy_() == sympy.Matrix(1, 4,
[sympy.Integer(1), sympy.Integer(2),
sympy.Integer(3), sympy.Integer(4)]))
B = DenseMatrix(4, 1, [Symbol("x"), Symbol("y"), Symbol("z"), Symbol("t")])
assert (B._sympy_() == sympy.Matrix(4, 1,
[sympy.Symbol("x"), sympy.Symbol("y"),
sympy.Symbol("z"), sympy.Symbol("t")])
)
C = DenseMatrix(2, 2,
[Integer(5), Symbol("x"),
function_symbol("f", Symbol("x")), 1 + I])
assert (C._sympy_() ==
sympy.Matrix([[5, sympy.Symbol("x")],
[sympy.Function("f")(sympy.Symbol("x")),
1 + sympy.I]]))
示例3: test_conv10b
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import I [as 別名]
def test_conv10b():
A = sympy.Matrix([[sympy.Symbol("x"), sympy.Symbol("y")],
[sympy.Symbol("z"), sympy.Symbol("t")]])
assert sympify(A) == DenseMatrix(2, 2, [Symbol("x"), Symbol("y"),
Symbol("z"), Symbol("t")])
B = sympy.Matrix([[1, 2], [3, 4]])
assert sympify(B) == DenseMatrix(2, 2, [Integer(1), Integer(2), Integer(3),
Integer(4)])
C = sympy.Matrix([[7, sympy.Symbol("y")],
[sympy.Function("g")(sympy.Symbol("z")), 3 + 2*sympy.I]])
assert sympify(C) == DenseMatrix(2, 2, [Integer(7), Symbol("y"),
function_symbol("g",
Symbol("z")),
3 + 2*I])
示例4: test_value_of
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import I [as 別名]
def test_value_of():
assert not bool(cirq.ParamResolver())
r = cirq.ParamResolver({'a': 0.5, 'b': 0.1, 'c': 1 + 1j})
assert bool(r)
assert r.value_of('x') == sympy.Symbol('x')
assert r.value_of('a') == 0.5
assert r.value_of(sympy.Symbol('a')) == 0.5
assert r.value_of(0.5) == 0.5
assert r.value_of(sympy.Symbol('b')) == 0.1
assert r.value_of(0.3) == 0.3
assert r.value_of(sympy.Symbol('a') * 3) == 1.5
assert r.value_of(sympy.Symbol('b') / 0.1 - sympy.Symbol('a')) == 0.5
assert r.value_of(sympy.pi) == np.pi
assert r.value_of(2 * sympy.pi) == 2 * np.pi
assert r.value_of('c') == 1 + 1j
assert r.value_of(sympy.I * sympy.pi) == np.pi * 1j
示例5: grim_to_sympy
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import I [as 別名]
def grim_to_sympy(expr, **kwargs):
import sympy
assert isinstance(expr, Expr)
if expr.is_integer():
return sympy.sympify(int(expr))
if expr.is_symbol():
if expr == Pi:
return sympy.pi
if expr == ConstI:
return sympy.I
if expr == ConstE:
return sympy.E
return sympy.Symbol(str(expr))
head = expr.head()
args = [grim_to_sympy(x, **kwargs) for x in expr.args()]
if head in (Pos, Parentheses, Brackets, Braces, AngleBrackets, Logic):
x, = args
return x
if expr.head() == Add:
return sympy.Add(*args)
if expr.head() == Mul:
return sympy.Mul(*args)
if expr.head() == Neg:
x, = args
return -x
if expr.head() == Sub:
a, b = args
return a - b
if expr.head() == Div:
p, q = args
return p / q
if expr.head() == Pow:
b, e = args
return b ** e
if expr.head() == Sqrt:
x, = args
return sympy.sqrt(x)
raise NotImplementedError("converting %s to SymPy", expr.head())
示例6: test_fcode_complex
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import I [as 別名]
def test_fcode_complex():
assert fcode(I) == " cmplx(0,1)"
x = symbols('x')
assert fcode(4*I) == " cmplx(0,4)"
assert fcode(3 + 4*I) == " cmplx(3,4)"
assert fcode(3 + 4*I + x) == " cmplx(3,4) + x"
assert fcode(I*x) == " cmplx(0,1)*x"
assert fcode(3 + 4*I - x) == " cmplx(3,4) - x"
x = symbols('x', imaginary=True)
assert fcode(5*x) == " 5*x"
assert fcode(I*x) == " cmplx(0,1)*x"
assert fcode(3 + x) == " x + 3"
示例7: EM_Waves_in_Geom_Calculus_Complex
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import I [as 別名]
def EM_Waves_in_Geom_Calculus_Complex():
#Print_Function()
X = (t,x,y,z) = symbols('t x y z',real=True)
g = '1 # # 0,# 1 # 0,# # 1 0,0 0 0 -1'
coords = (xE,xB,xk,t) = symbols('x_E x_B x_k t',real=True)
(EBkst,eE,eB,ek,et) = Ga.build('e_E e_B e_k e_t',g=g,coords=coords)
i = EBkst.i
E,B,k,w = symbols('E B k omega',real=True)
F = E*eE*et+i*B*eB*et
K = k*ek+w*et
X = xE*eE+xB*eB+xk*ek+t*et
KX = (K|X).scalar()
F = F*exp(I*KX)
g = EBkst.g
print('g =', g)
print('X =', X)
print('K =', K)
print('K|X =', KX)
print('F =', F)
gradF = EBkst.grad*F
gradF = gradF.simplify()
(gradF).Fmt(3,'grad*F = 0')
gradF = gradF.subs({g[0,1]:0,g[0,2]:0,g[1,2]:0})
KX = KX.subs({g[0,1]:0,g[0,2]:0,g[1,2]:0})
print(r'%\mbox{Substituting }e_{E}\cdot e_{B} = e_{E}\cdot e_{k} = e_{B}\cdot e_{k} = 0')
(gradF / (I*exp(I*KX))).Fmt(3,r'%\lp\bm{\nabla}F\rp/\lp ie^{iK\cdot X}\rp = 0')
return
示例8: test_conv9
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import I [as 別名]
def test_conv9():
x = Symbol("x")
y = Symbol("y")
assert (I)._sympy_() == sympy.I
assert (2*I+3)._sympy_() == 2*sympy.I+3
assert (2*I/5+Integer(3)/5)._sympy_() == 2*sympy.I/5+sympy.S(3)/5
assert (x*I+3)._sympy_() == sympy.Symbol("x")*sympy.I + 3
assert (x+I*y)._sympy_() == sympy.Symbol("x") + sympy.I*sympy.Symbol("y")
示例9: test_conv9b
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import I [as 別名]
def test_conv9b():
x = Symbol("x")
y = Symbol("y")
assert sympify(sympy.I) == I
assert sympify(2*sympy.I+3) == 2*I+3
assert sympify(2*sympy.I/5+sympy.S(3)/5) == 2*I/5+Integer(3)/5
assert sympify(sympy.Symbol("x")*sympy.I + 3) == x*I+3
assert sympify(sympy.Symbol("x") + sympy.I*sympy.Symbol("y")) == x+I*y
示例10: test_mpc
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import I [as 別名]
def test_mpc():
if have_mpc:
a = ComplexMPC('1', '2', 100)
b = sympy.Float(1, 29) + sympy.Float(2, 29) * sympy.I
assert sympify(b) == a
assert b == a._sympy_()
示例11: _eval_commutator_SigmaY
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import I [as 別名]
def _eval_commutator_SigmaY(self, other, **hints):
if self.name != other.name:
return Integer(0)
else:
return 2 * I * SigmaZ(self.name)
示例12: _eval_commutator_SigmaZ
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import I [as 別名]
def _eval_commutator_SigmaZ(self, other, **hints):
if self.name != other.name:
return Integer(0)
else:
return - 2 * I * SigmaY(self.name)
示例13: __mul__
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import I [as 別名]
def __mul__(self, other):
if isinstance(other, SigmaOpBase) and self.name != other.name:
# Pauli matrices with different labels commute; sort by name
if self.name < other.name:
return Mul(self, other)
else:
return Mul(other, self)
if isinstance(other, SigmaX) and self.name == other.name:
return Integer(1)
if isinstance(other, SigmaY) and self.name == other.name:
return I * SigmaZ(self.name)
if isinstance(other, SigmaZ) and self.name == other.name:
return - I * SigmaY(self.name)
if isinstance(other, SigmaMinus) and self.name == other.name:
return (Integer(1)/2 + SigmaZ(self.name)/2)
if isinstance(other, SigmaPlus) and self.name == other.name:
return (Integer(1)/2 - SigmaZ(self.name)/2)
if isinstance(other, Mul):
args1 = tuple(arg for arg in other.args if arg.is_commutative)
args2 = tuple(arg for arg in other.args if not arg.is_commutative)
x = self
for y in args2:
x = x * y
return Mul(*args1) * x
return Mul(self, other)
示例14: _eval_commutator_SigmaX
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import I [as 別名]
def _eval_commutator_SigmaX(self, other, **hints):
if self.name != other.name:
return Integer(0)
else:
return - 2 * I * SigmaZ(self.name)
示例15: _represent_default_basis
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import I [as 別名]
def _represent_default_basis(self, **options):
format = options.get('format', 'sympy')
if format == 'sympy':
return Matrix([[0, -I], [I, 0]])
else:
raise NotImplementedError('Representation in format ' +
format + ' not implemented.')