本文整理匯總了Python中statsmodels.tsa.arima_model.ARIMA屬性的典型用法代碼示例。如果您正苦於以下問題:Python arima_model.ARIMA屬性的具體用法?Python arima_model.ARIMA怎麽用?Python arima_model.ARIMA使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類statsmodels.tsa.arima_model
的用法示例。
在下文中一共展示了arima_model.ARIMA屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: arima
# 需要導入模塊: from statsmodels.tsa import arima_model [as 別名]
# 或者: from statsmodels.tsa.arima_model import ARIMA [as 別名]
def arima(df, *, ar, i, ma, fit=True):
"""
Create an ARIMA object for modeling time series.
Parameters:
- df: The dataframe containing the stock closing price as `close`
and with a time index.
- ar: The autoregressive order (p).
- i: The differenced order (q).
- ma: The moving average order (d).
- fit: Whether or not to return the fitted model,
defaults to True.
Returns:
A statsmodels ARIMA object which you can use to fit and predict.
"""
arima_model = ARIMA(
df.close.asfreq('B').fillna(method='ffill'), order=(ar, i, ma)
)
return arima_model.fit() if fit else arima_model
示例2: test_01
# 需要導入模塊: from statsmodels.tsa import arima_model [as 別名]
# 或者: from statsmodels.tsa.arima_model import ARIMA [as 別名]
def test_01(self):
ts_data = self.getData()
f_name='arima201_c_car_sold.pmml'
model = ARIMA(ts_data,order=(2,0,1))
result = model.fit(trend = 'c', method = 'css')
StatsmodelsToPmml(result, f_name, conf_int=[95])
model_name = self.adapa_utility.upload_to_zserver(f_name)
z_pred = self.adapa_utility.score_in_zserver(model_name, {'h':5},'TS')
z_forecasts = np.array(list(z_pred['outputs'][0]['predicted_'+ts_data.squeeze().name].values()))
model_forecasts = result.forecast(5)[0]
z_conf_int_95_upper = np.array(list(z_pred['outputs'][0]['conf_int_95_upper_'+ts_data.squeeze().name].values()))
model_conf_int_95_upper = result.forecast(5)[-1][:,-1]
z_conf_int_95_lower = np.array(list(z_pred['outputs'][0]['conf_int_95_lower_'+ts_data.squeeze().name].values()))
model_conf_int_95_lower = result.forecast(5)[-1][:,0]
self.assertEqual(np.allclose(z_forecasts, model_forecasts),True)
self.assertEqual(np.allclose(z_conf_int_95_upper, model_conf_int_95_upper),True)
self.assertEqual(np.allclose(z_conf_int_95_lower, model_conf_int_95_lower),True)
示例3: rolling_forecast_ARIMA
# 需要導入模塊: from statsmodels.tsa import arima_model [as 別名]
# 或者: from statsmodels.tsa.arima_model import ARIMA [as 別名]
def rolling_forecast_ARIMA(train, test, order, nsteps=1):
tseries = [x for x in train]
rets = []
errors = []
tindex = pd.to_datetime(np.arange(1, len(train) + nsteps + 1))
for i in range(nsteps):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# hack the time index, else ARIMA will not run
model_fit, residuals = fit_ARIMA(tseries, dates=tindex[0:len(tseries)], order=order)
if len(order) == 3:
# ARIMA forecast
forecasts = model_fit.forecast()
val = forecasts[0]
else:
# SARIMA forecast
val = model_fit.forecast()
val = val[0]
rets.append(val)
errors.append(test[i] - val)
tseries.append(test[i])
return np.array(rets, dtype=float), np.array(errors, dtype=float)
示例4: __init__
# 需要導入模塊: from statsmodels.tsa import arima_model [as 別名]
# 或者: from statsmodels.tsa.arima_model import ARIMA [as 別名]
def __init__(self, p, d, q, steps):
"""Initialize the ARIMA object.
Args:
p (int):
Integer denoting the order of the autoregressive model.
d (int):
Integer denoting the degree of differencing.
q (int):
Integer denoting the order of the moving-average model.
steps (int):
Integer denoting the number of time steps to predict ahead.
"""
self.p = p
self.d = d
self.q = q
self.steps = steps
示例5: arima_predictions
# 需要導入模塊: from statsmodels.tsa import arima_model [as 別名]
# 或者: from statsmodels.tsa.arima_model import ARIMA [as 別名]
def arima_predictions(df, arima_model_fitted, start, end, plot=True, **kwargs):
"""
Get ARIMA predictions as pandas Series or plot.
Parameters:
- df: The dataframe for the stock.
- arima_model_fitted: The fitted ARIMA model.
- start: The start date for the predictions.
- end: The end date for the predictions.
- plot: Whether or not to plot the result, default is
True meaning the plot is returned instead of the
pandas Series containing the predictions.
- kwargs: Additional keyword arguments to pass to the pandas
`plot()` method.
Returns:
A matplotlib Axes object or predictions as a Series
depending on the value of the `plot` argument.
"""
predicted_changes = arima_model_fitted.predict(
start=start,
end=end
)
predictions = pd.Series(
predicted_changes, name='close'
).cumsum() + df.last('1D').close.iat[0]
if plot:
ax = df.close.plot(**kwargs)
predictions.plot(ax=ax, style='r:', label='arima predictions')
ax.legend()
return ax if plot else predictions
示例6: setup_class
# 需要導入模塊: from statsmodels.tsa import arima_model [as 別名]
# 或者: from statsmodels.tsa.arima_model import ARIMA [as 別名]
def setup_class(cls):
cls.true = results_sarimax.wpi1_stationary
endog = cls.true['data']
cls.model_a = arima.ARIMA(endog, order=(1, 1, 1))
cls.result_a = cls.model_a.fit(disp=-1)
cls.model_b = sarimax.SARIMAX(endog, order=(1, 1, 1), trend='c',
simple_differencing=True,
hamilton_representation=True)
cls.result_b = cls.model_b.fit(disp=-1)
示例7: test_mle
# 需要導入模塊: from statsmodels.tsa import arima_model [as 別名]
# 或者: from statsmodels.tsa.arima_model import ARIMA [as 別名]
def test_mle(self):
# ARIMA estimates the mean of the process, whereas SARIMAX estimates
# the intercept. Convert the mean to intercept to compare
params_a = self.result_a.params.copy()
params_a[0] = (1 - params_a[1]) * params_a[0]
assert_allclose(self.result_b.params[:-1], params_a, atol=5e-5)
示例8: fit_ARIMA
# 需要導入模塊: from statsmodels.tsa import arima_model [as 別名]
# 或者: from statsmodels.tsa.arima_model import ARIMA [as 別名]
def fit_ARIMA(series, dates=None, order=(0, 0, 1)):
"""Fits either an ARIMA or a SARIMA model depending on whether order is 3 or 4 dimensional
:param series:
:param dates:
:param order: tuple
If this has 3 elements, an ARIMA model will be fit
If this has 4 elements, the fourth is the seasonal factor and SARIMA will be fit
:return: fitted model, array of residuals
"""
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# hack the time index, else ARIMA will not run
if dates is None:
dates = pd.to_datetime(np.arange(1, len(series)+1))
if len(order) > 3:
seasonal_order = (0, 0, 0, order[3])
arima_order = (order[0], order[1], order[2])
model = SARIMAX(series, dates=dates, order=arima_order, seasonal_order=seasonal_order)
model_fit = model.fit(disp=0)
residuals = model_fit.resid
else:
model = ARIMA(series, dates=dates, order=order)
model_fit = model.fit(disp=0)
residuals = model_fit.resid
return model_fit, residuals
示例9: train
# 需要導入模塊: from statsmodels.tsa import arima_model [as 別名]
# 或者: from statsmodels.tsa.arima_model import ARIMA [as 別名]
def train(self, data, **kwargs):
if 'order' in kwargs:
order = kwargs.pop('order')
self._decompose_order(order)
if self.indexer is not None:
data = self.indexer.get_data(data)
try:
self.model = stats_arima(data, order=(self.p, self.d, self.q))
self.model_fit = self.model.fit(disp=0)
except Exception as ex:
print(ex)
self.model_fit = None
示例10: _evaluate_arima_model
# 需要導入模塊: from statsmodels.tsa import arima_model [as 別名]
# 或者: from statsmodels.tsa.arima_model import ARIMA [as 別名]
def _evaluate_arima_model(X: Union[pd.Series, pd.DataFrame], arima_order: Tuple[int, int, int],
train_size: Union[float, int, None], freq: str) -> Tuple[float, dict]:
train_size = int(len(X) * 0.75) if train_size is None else int(len(X) * train_size) \
if isinstance(train_size, float) else train_size
train, test = X[:train_size].astype(float), X[train_size:].astype(float)
model = ARIMA(train, order=arima_order, freq=freq)
model_fit = model.fit(disp=False, method='css', trend='nc')
# calculate test error
yhat = model_fit.forecast(len(test))[0]
error = mse(test, yhat)
return error, model_fit
示例11: transform
# 需要導入模塊: from statsmodels.tsa import arima_model [as 別名]
# 或者: from statsmodels.tsa.arima_model import ARIMA [as 別名]
def transform(self, X: Union[pd.Series, pd.DataFrame]) -> pd.DataFrame:
"""
Transform a series based on the best ARIMA found from fit().
Does not support tranformation using MA components.
:param X: time series to be operated on; required parameter
:return: DataFrame
"""
X = X.to_frame() if isinstance(X, pd.Series) else X
return pd.DataFrame({s_id: self._arima_transform_series(self.best_params[s_id]) for s_id in X.columns})
示例12: predict
# 需要導入模塊: from statsmodels.tsa import arima_model [as 別名]
# 或者: from statsmodels.tsa.arima_model import ARIMA [as 別名]
def predict(self, X):
"""Predict values using the initialized object.
Args:
X (ndarray):
N-dimensional array containing the input sequences for the model.
Returns:
ndarray:
N-dimensional array containing the predictions for each input sequence.
"""
arima_results = list()
dimensions = len(X.shape)
if dimensions > 2:
raise ValueError("Only 1D o 2D arrays are supported")
if dimensions == 1 or X.shape[1] == 1:
X = np.expand_dims(X, axis=0)
num_sequences = len(X)
for sequence in range(num_sequences):
arima = arima_model.ARIMA(X[sequence], order=(self.p, self.d, self.q))
arima_fit = arima.fit(disp=0)
arima_results.append(arima_fit.forecast(self.steps)[0])
arima_results = np.asarray(arima_results)
if dimensions == 1:
arima_results = arima_results[0]
return arima_results
示例13: test_arima000
# 需要導入模塊: from statsmodels.tsa import arima_model [as 別名]
# 或者: from statsmodels.tsa.arima_model import ARIMA [as 別名]
def test_arima000():
from statsmodels.tsa.statespace.tools import compatibility_mode
# Test an ARIMA(0,0,0) with measurement error model (i.e. just estimating
# a variance term)
np.random.seed(328423)
nobs = 50
endog = pd.DataFrame(np.random.normal(size=nobs))
mod = sarimax.SARIMAX(endog, order=(0, 0, 0), measurement_error=False)
res = mod.smooth(mod.start_params)
assert_allclose(res.smoothed_state, endog.T)
# ARIMA(0, 1, 0)
mod = sarimax.SARIMAX(endog, order=(0, 1, 0), measurement_error=False)
res = mod.smooth(mod.start_params)
assert_allclose(res.smoothed_state[1:, 1:], endog.diff()[1:].T)
# SARIMA(0, 1, 0)x(0, 1, 0, 1)
mod = sarimax.SARIMAX(endog, order=(0, 1, 0), measurement_error=True,
seasonal_order=(0, 1, 0, 1))
res = mod.smooth(mod.start_params)
# Exogenous variables
error = np.random.normal(size=nobs)
endog = np.ones(nobs) * 10 + error
exog = np.ones(nobs)
# We need univariate filtering here, to guarantee we won't hit singular
# forecast error covariance matrices.
if compatibility_mode:
return
# OLS
mod = sarimax.SARIMAX(endog, order=(0, 0, 0), exog=exog)
mod.ssm.filter_univariate = True
res = mod.smooth([10., 1.])
assert_allclose(res.smoothed_state[0], error, atol=1e-10)
# RLS
mod = sarimax.SARIMAX(endog, order=(0, 0, 0), exog=exog,
mle_regression=False)
mod.ssm.filter_univariate = True
mod.initialize_known([0., 10.], np.diag([1., 0.]))
res = mod.smooth([1.])
assert_allclose(res.smoothed_state[0], error, atol=1e-10)
assert_allclose(res.smoothed_state[1], 10, atol=1e-10)
# RLS + TVP
mod = sarimax.SARIMAX(endog, order=(0, 0, 0), exog=exog,
mle_regression=False, time_varying_regression=True)
mod.ssm.filter_univariate = True
mod.initialize_known([10.], np.diag([0.]))
res = mod.smooth([0., 1.])
assert_allclose(res.smoothed_state[0], 10, atol=1e-10)
示例14: fit
# 需要導入模塊: from statsmodels.tsa import arima_model [as 別名]
# 或者: from statsmodels.tsa.arima_model import ARIMA [as 別名]
def fit(self, X: Union[pd.Series, pd.DataFrame], train_size: Union[float, int, None] = None,
p_vals: list = (0, 1, 2), d_vals: list = (0, 1, 2), q_vals: list = (0, 1, 2), freq: str = None) -> 'arima':
"""
Train a combination of ARIMA models. If pandas DataFrame, finds the
best arima model parameters for each column. If pandas Series, finds
the best arima model parameters for the series.
:param X: time series to be operated on; required parameter
:param train_size: if float, should be between 0.0 and 1.0 and
represent the proportion of the dataset to include in the train split.
If int, represents the absolute number of train samples. If None,
the value is automatically set 0.75
:p_vals: number of autoregressive terms to search; default is [0,1,2]
:d_vals: number of differences to search; default is [0,1,2]
:q_vals: number of lagged forecast to search; always [0,1,2]
:freq: frequency of time series, default is None
:return: self
"""
if isinstance(X, pd.Series):
X = X.to_frame()
for series_id in X.columns:
series = X[series_id]
best_score = float('inf')
best_order = None
best_const = None
best_ar_coef = None
best_ma_coef = None
best_resid = None
for order in list(itertools.product(*[p_vals, d_vals, q_vals])):
try:
error, model_fit = self._evaluate_arima_model(series, order, train_size, freq)
if error < best_score:
best_score = error
best_order = order
best_const = model_fit.params.to_dict().get('const', 0)
best_ar_coef = model_fit.arparams
best_ma_coef = model_fit.maparams
best_resid = model_fit.resid
except Exception as e:
print(' {}'.format(e))
continue
p, d, q = best_order
self.best_params[series_id] = ARIMABestParams(freq, p, d, q, best_const, best_ar_coef, best_ma_coef,
best_resid, series)
return self
示例15: _fit
# 需要導入模塊: from statsmodels.tsa import arima_model [as 別名]
# 或者: from statsmodels.tsa.arima_model import ARIMA [as 別名]
def _fit(self, X):
for variable in self.feature_variables:
df_util.assert_field_present(X, variable)
df_util.drop_unused_fields(X, self.feature_variables)
df_util.assert_any_fields(X)
df_util.assert_any_rows(X)
if X[self.time_series].dtype == object:
raise ValueError('%s contains non-numeric data. ARIMA only accepts numeric data.' % self.time_series)
X[self.time_series] = X[self.time_series].astype(float)
try:
self.estimator = _ARIMA(X[self.time_series].values,
order=self.out_params['model_params']['order'],
missing=self.out_params['model_params']['missing']).fit(disp=False)
except ValueError as e:
if 'stationary' in e.message:
raise ValueError("The computed initial AR coefficients are not "
"stationary. You should induce stationarity by choosing a different model order.")
elif 'invertible' in e.message:
raise ValueError("The computed initial MA coefficients are not invertible. "
"You should induce invertibility by choosing a different model order.")
else:
cexc.log_traceback()
raise ValueError(e)
except MissingDataError:
raise RuntimeError('Empty or null values are not supported in %s. '
'If using timechart, try using a larger span.'
% self.time_series)
except Exception as e:
cexc.log_traceback()
raise RuntimeError(e)
# Saving the _time but not as a part of the ARIMA structure but as new attribute for ARIMA.
if '_time' in self.feature_variables:
freq = self._find_freq(X['_time'].values, self.freq_threshold)
self.estimator.datetime_information = dict(ver=0,
_time=X['_time'].values,
freq=freq,
# in seconds (unix epoch)
first_timestamp=X['_time'].values[0],
last_timestamp=X['_time'].values[-1],
length=len(X))
else:
self.estimator.datetime_information = dict(ver=0,
_time=None,
freq=None,
first_time=None,
last_time=None,
length=len(X))