當前位置: 首頁>>代碼示例>>Python>>正文


Python linear_model.OLS屬性代碼示例

本文整理匯總了Python中statsmodels.regression.linear_model.OLS屬性的典型用法代碼示例。如果您正苦於以下問題:Python linear_model.OLS屬性的具體用法?Python linear_model.OLS怎麽用?Python linear_model.OLS使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在statsmodels.regression.linear_model的用法示例。


在下文中一共展示了linear_model.OLS屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_calc_wdesign_mat

# 需要導入模塊: from statsmodels.regression import linear_model [as 別名]
# 或者: from statsmodels.regression.linear_model import OLS [as 別名]
def test_calc_wdesign_mat():

    # seperately tests that _calc_wdesign_mat
    # returns sensible results
    #
    # regression test

    np.random.seed(435265)
    X = np.random.normal(size=(3, 3))
    y = np.random.randint(0, 2, size=3)
    beta = np.random.normal(size=3)
    mod = OLS(y, X)
    dmat = _calc_wdesign_mat(mod, beta, {})
    assert_allclose(dmat, np.array([[1.306314, -0.024897, 1.326498],
                                    [-0.539219, -0.483028, -0.703503],
                                    [-3.327987, 0.524541, -0.139761]]),
                    atol=1e-6, rtol=0)

    mod = GLM(y, X, family=Binomial())
    dmat = _calc_wdesign_mat(mod, beta, {})
    assert_allclose(dmat, np.array([[0.408616, -0.007788, 0.41493],
                                    [-0.263292, -0.235854, -0.343509],
                                    [-0.11241, 0.017718, -0.004721]]),
                    atol=1e-6, rtol=0) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:26,代碼來源:test_distributed_estimation.py

示例2: test_est_unregularized_naive

# 需要導入模塊: from statsmodels.regression import linear_model [as 別名]
# 或者: from statsmodels.regression.linear_model import OLS [as 別名]
def test_est_unregularized_naive():

    # tests that the shape of all the intermediate steps
    # remains correct for unregularized naive estimation,
    # does this for OLS and GLM

    np.random.seed(435265)
    X = np.random.normal(size=(50, 3))
    y = np.random.randint(0, 2, size=50)
    beta = np.random.normal(size=3)
    mod = OLS(y, X)
    res = _est_unregularized_naive(mod, 0, 2, fit_kwds={"alpha": 0.5})

    assert_equal(res.shape, beta.shape)

    mod = GLM(y, X, family=Binomial())
    res = _est_unregularized_naive(mod, 0, 2, fit_kwds={"alpha": 0.5})

    assert_equal(res.shape, beta.shape) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:21,代碼來源:test_distributed_estimation.py

示例3: test_non_zero_params

# 需要導入模塊: from statsmodels.regression import linear_model [as 別名]
# 或者: from statsmodels.regression.linear_model import OLS [as 別名]
def test_non_zero_params():

    # tests that the thresholding does not cause any issues

    np.random.seed(435265)
    N = 200
    p = 10
    m = 5

    beta = np.random.normal(size=p)
    beta = beta * np.random.randint(0, 2, p)
    X = np.random.normal(size=(N, p))
    y = X.dot(beta) + np.random.normal(size=N)

    db_mod = DistributedModel(m, join_kwds={"threshold": 0.13})
    fitOLSdb = db_mod.fit(_data_gen(y, X, m), fit_kwds={"alpha": 0.1})
    ols_mod = OLS(y, X)
    fitOLS = ols_mod.fit_regularized(alpha=0.1)

    nz_params_db = 1 * (fitOLSdb.params != 0)
    nz_params_ols = 1 * (fitOLS.params != 0)

    assert_allclose(nz_params_db, nz_params_ols) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:25,代碼來源:test_distributed_estimation.py

示例4: test_alignment

# 需要導入模塊: from statsmodels.regression import linear_model [as 別名]
# 或者: from statsmodels.regression.linear_model import OLS [as 別名]
def test_alignment():
    #Fix Issue #206
    from statsmodels.regression.linear_model import OLS
    from statsmodels.datasets.macrodata import load_pandas

    d = load_pandas().data
    #growth rates
    gs_l_realinv = 400 * np.log(d['realinv']).diff().dropna()
    gs_l_realgdp = 400 * np.log(d['realgdp']).diff().dropna()
    lint = d['realint'][:-1] # incorrect indexing for test purposes

    endog = gs_l_realinv

    # re-index because they won't conform to lint
    realgdp = gs_l_realgdp.reindex(lint.index, method='bfill')
    data = dict(const=np.ones_like(lint), lrealgdp=realgdp, lint=lint)
    exog = pandas.DataFrame(data)

    # which index do we get??
    np.testing.assert_raises(ValueError, OLS, *(endog, exog)) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:22,代碼來源:test_data.py

示例5: setup_class

# 需要導入模塊: from statsmodels.regression import linear_model [as 別名]
# 或者: from statsmodels.regression.linear_model import OLS [as 別名]
def setup_class(cls):
        '''
        Test Gaussian family with canonical identity link
        '''
        # Test Precisions
        cls.decimal_resids = DECIMAL_3
        cls.decimal_params = DECIMAL_2
        cls.decimal_bic = DECIMAL_0
        cls.decimal_bse = DECIMAL_3

        from statsmodels.datasets.longley import load
        cls.data = load()
        cls.data.exog = add_constant(cls.data.exog, prepend=False)
        params = sm.OLS(cls.data.endog, cls.data.exog).fit().params
        cls.res1 = GLM(cls.data.endog, cls.data.exog,
                        family=sm.families.Gaussian()).fit(start_params=params)
        from .results.results_glm import Longley
        cls.res2 = Longley() 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:20,代碼來源:test_glm.py

示例6: setup_class

# 需要導入模塊: from statsmodels.regression import linear_model [as 別名]
# 或者: from statsmodels.regression.linear_model import OLS [as 別名]
def setup_class(cls):
        nobs, k_exog = 100, 5
        np.random.seed(987125)
        x = np.random.randn(nobs, k_exog - 1)
        x = add_constant(x)

        y_true = x.sum(1) / 2
        y = y_true + 2 * np.random.randn(nobs)
        cls.endog = y
        cls.exog = x
        cls.idx_uc = [0, 2, 3, 4]
        cls.idx_p_uc = np.array(cls.idx_uc)
        cls.idx_c = [1]
        cls.exogc = xc = x[:, cls.idx_uc]
        mod_ols_c = OLS(y - 0.5 * x[:, 1], xc)
        mod_ols_c.exog_names[:] = ['const', 'x2', 'x3', 'x4']
        cls.mod2 = mod_ols_c
        cls.init() 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:20,代碼來源:test_constrained.py

示例7: test_compatibility

# 需要導入模塊: from statsmodels.regression import linear_model [as 別名]
# 或者: from statsmodels.regression.linear_model import OLS [as 別名]
def test_compatibility(self):
        """Hypothesis test for the compatibility of prior mean with data

        """
        # TODO: should we store the OLS results ?  not needed so far, but maybe cache
        #params_ols = np.linalg.pinv(self.model.exog).dot(self.model.endog)
        #res = self.wald_test(self.model.r_matrix, q_matrix=self.model.q_matrix, use_f=False)
        #from scratch
        res_ols = OLS(self.model.endog, self.model.exog).fit()
        r_mat = self.model.r_matrix
        r_diff = self.model.q_matrix - r_mat.dot(res_ols.params)[:,None]
        ols_cov_r = res_ols.cov_params(r_matrix=r_mat)
        statistic = r_diff.T.dot(np.linalg.solve(ols_cov_r + self.model.sigma_prior, r_diff))
        from scipy import stats
        df = np.linalg.matrix_rank(self.model.sigma_prior)   # same as r_mat.shape[0]
        pvalue = stats.chi2.sf(statistic, df)
        # TODO: return results class
        return statistic, pvalue, df 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:20,代碼來源:penalized.py

示例8: setup_class

# 需要導入模塊: from statsmodels.regression import linear_model [as 別名]
# 或者: from statsmodels.regression.linear_model import OLS [as 別名]
def setup_class(cls):
        #cls.bse_tol = [5e-7, 5e-7]
        # compare to Stata default options, iterative GMM
        exog = exog_st  # with const at end
        start = OLS(endog, exog).fit().params
        nobs, k_instr = instrument.shape
        w0inv = np.dot(instrument.T, instrument) / nobs
        #w0 = np.linalg.inv(w0inv)

        mod = gmm.IVGMM(endog, exog, instrument)
        res10 = mod.fit(start, maxiter=10, inv_weights=w0inv,
                        optim_method='bfgs', optim_args={'gtol':1e-6, 'disp': 0},
                        wargs={'centered':False})
        cls.res1 = res10

        from .results_gmm_griliches_iter import results
        cls.res2 = results 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:19,代碼來源:test_gmm.py

示例9: fit

# 需要導入模塊: from statsmodels.regression import linear_model [as 別名]
# 或者: from statsmodels.regression.linear_model import OLS [as 別名]
def fit(self):
        """
        Fits the model and provides regression results.

        Returns
        -------
        Results : class
            Empirical likelihood regression class

        """
        exog_with = add_constant(self.exog, prepend=True)
        restricted_model = OLS(self.endog, exog_with)
        restricted_fit = restricted_model.fit()
        restricted_el = restricted_fit.el_test(
        np.array([0]), np.array([0]), ret_params=1)
        params = np.squeeze(restricted_el[3])
        beta_hat_llr = restricted_el[0]
        llf = np.sum(np.log(restricted_el[2]))
        return OriginResults(restricted_model, params, beta_hat_llr, llf) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:21,代碼來源:originregress.py

示例10: _calc_grad

# 需要導入模塊: from statsmodels.regression import linear_model [as 別名]
# 或者: from statsmodels.regression.linear_model import OLS [as 別名]
def _calc_grad(mod, params, alpha, L1_wt, score_kwds):
    """calculates the log-likelihood gradient for the debiasing

    Parameters
    ----------
    mod : statsmodels model class instance
        The model for the current partition.
    params : array-like
        The estimated coefficients for the current partition.
    alpha : scalar or array-like
        The penalty weight.  If a scalar, the same penalty weight
        applies to all variables in the model.  If a vector, it
        must have the same length as `params`, and contains a
        penalty weight for each coefficient.
    L1_wt : scalar
        The fraction of the penalty given to the L1 penalty term.
        Must be between 0 and 1 (inclusive).  If 0, the fit is
        a ridge fit, if 1 it is a lasso fit.
    score_kwds : dict-like or None
        Keyword arguments for the score function.

    Returns
    -------
    An array-like object of the same dimension as params

    Notes
    -----
    In general:

    gradient l_k(params)

    where k corresponds to the index of the partition

    For OLS:

    X^T(y - X^T params)
    """

    grad = -mod.score(np.asarray(params), **score_kwds)
    grad += alpha * (1 - L1_wt)
    return grad 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:43,代碼來源:distributed_estimation.py

示例11: test_calc_grad

# 需要導入模塊: from statsmodels.regression import linear_model [as 別名]
# 或者: from statsmodels.regression.linear_model import OLS [as 別名]
def test_calc_grad():

    # seperately tests that _calc_grad returns
    # sensible results
    #
    # regression test

    np.random.seed(435265)
    X = np.random.normal(size=(50, 3))
    y = np.random.randint(0, 2, size=50)
    beta = np.random.normal(size=3)
    mod = OLS(y, X)
    grad = _calc_grad(mod, beta, 0.01, 1, {})
    assert_allclose(grad, np.array([19.75816, -6.62307, 7.324644]),
                    atol=1e-6, rtol=0) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:17,代碼來源:test_distributed_estimation.py

示例12: test_est_regularized_debiased

# 需要導入模塊: from statsmodels.regression import linear_model [as 別名]
# 或者: from statsmodels.regression.linear_model import OLS [as 別名]
def test_est_regularized_debiased():

    # tests that the shape of all the intermediate steps
    # remains correct for regularized debiased estimation,
    # does this for OLS and GLM

    np.random.seed(435265)
    X = np.random.normal(size=(50, 3))
    y = np.random.randint(0, 2, size=50)
    beta = np.random.normal(size=3)
    mod = OLS(y, X)
    res = _est_regularized_debiased(mod, 0, 2, fit_kwds={"alpha": 0.5})
    bhat = res[0]
    grad = res[1]
    ghat_l = res[2]
    that_l = res[3]

    assert_(isinstance(res, tuple))
    assert_equal(bhat.shape, beta.shape)
    assert_equal(grad.shape, beta.shape)
    assert_(isinstance(ghat_l, list))
    assert_(isinstance(that_l, list))
    assert_equal(len(ghat_l), len(that_l))
    assert_equal(ghat_l[0].shape, (2,))
    assert_(isinstance(that_l[0], float))

    mod = GLM(y, X, family=Binomial())
    res = _est_regularized_debiased(mod, 0, 2, fit_kwds={"alpha": 0.5})
    bhat = res[0]
    grad = res[1]
    ghat_l = res[2]
    that_l = res[3]

    assert_(isinstance(res, tuple))
    assert_equal(bhat.shape, beta.shape)
    assert_equal(grad.shape, beta.shape)
    assert_(isinstance(ghat_l, list))
    assert_(isinstance(that_l, list))
    assert_equal(len(ghat_l), len(that_l))
    assert_equal(ghat_l[0].shape, (2,))
    assert_(isinstance(that_l[0], float)) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:43,代碼來源:test_distributed_estimation.py

示例13: test_join_debiased

# 需要導入模塊: from statsmodels.regression import linear_model [as 別名]
# 或者: from statsmodels.regression.linear_model import OLS [as 別名]
def test_join_debiased():

    # tests that the results of all the intermediate steps
    # remains correct for debiased join, does this for OLS and GLM
    #
    # regression test

    np.random.seed(435265)
    X = np.random.normal(size=(50, 3))
    y = np.random.randint(0, 2, size=50)
    mod = OLS(y, X)
    res_l = []
    for i in range(2):
        res = _est_regularized_debiased(mod, i, 2, fit_kwds={"alpha": 0.1})
        res_l.append(res)
    joined = _join_debiased(res_l)
    assert_allclose(joined, np.array([-0.167548, -0.016567, -0.34414]),
                    atol=1e-6, rtol=0)

    mod = GLM(y, X, family=Binomial())
    res_l = []
    for i in range(2):
        res = _est_regularized_debiased(mod, i, 2, fit_kwds={"alpha": 0.1})
        res_l.append(res)
    joined = _join_debiased(res_l)
    assert_allclose(joined, np.array([-0.164515, -0.412854, -0.223955]),
                    atol=1e-6, rtol=0) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:29,代碼來源:test_distributed_estimation.py

示例14: test_join_naive

# 需要導入模塊: from statsmodels.regression import linear_model [as 別名]
# 或者: from statsmodels.regression.linear_model import OLS [as 別名]
def test_join_naive():

    # tests that the results of all the intermediate steps
    # remains correct for naive join, does this for OLS and GLM
    #
    # regression test

    np.random.seed(435265)
    X = np.random.normal(size=(50, 3))
    y = np.random.randint(0, 2, size=50)
    mod = OLS(y, X)
    res_l = []
    for i in range(2):
        res = _est_regularized_naive(mod, i, 2, fit_kwds={"alpha": 0.1})
        res_l.append(res)
    joined = _join_naive(res_l)
    assert_allclose(joined, np.array([-0.020757, 0., 0.]),
                    atol=1e-6, rtol=0)

    mod = GLM(y, X, family=Binomial())
    res_l = []
    for i in range(2):
        res = _est_regularized_naive(mod, i, 2, fit_kwds={"alpha": 0.1})
        res_l.append(res)
    joined = _join_naive(res_l)
    assert_allclose(joined, np.array([0., 0., 0.]),
                    atol=1e-6, rtol=0) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:29,代碼來源:test_distributed_estimation.py

示例15: test_repeat_partition

# 需要導入模塊: from statsmodels.regression import linear_model [as 別名]
# 或者: from statsmodels.regression.linear_model import OLS [as 別名]
def test_repeat_partition():

    # tests that if we use identical partitions the average is the same
    # as the estimate for the full data

    np.random.seed(435265)
    N = 200
    p = 10
    m = 1

    beta = np.random.normal(size=p)
    beta = beta * np.random.randint(0, 2, p)
    X = np.random.normal(size=(N, p))
    y = X.dot(beta) + np.random.normal(size=N)

    def _rep_data_gen(endog, exog, partitions):
        """partitions data"""

        n_exog = exog.shape[0]
        n_part = np.ceil(n_exog / partitions)

        ii = 0
        while ii < n_exog:
            yield endog, exog
            ii += int(n_part)

    nv_mod = DistributedModel(m, estimation_method=_est_regularized_naive,
                              join_method=_join_naive)
    fitOLSnv = nv_mod.fit(_rep_data_gen(y, X, m), fit_kwds={"alpha": 0.1})

    ols_mod = OLS(y, X)
    fitOLS = ols_mod.fit_regularized(alpha=0.1)

    assert_allclose(fitOLSnv.params, fitOLS.params) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:36,代碼來源:test_distributed_estimation.py


注:本文中的statsmodels.regression.linear_model.OLS屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。