本文整理匯總了Python中statsmodels.distributions.empirical_distribution.ECDF屬性的典型用法代碼示例。如果您正苦於以下問題:Python empirical_distribution.ECDF屬性的具體用法?Python empirical_distribution.ECDF怎麽用?Python empirical_distribution.ECDF使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類statsmodels.distributions.empirical_distribution
的用法示例。
在下文中一共展示了empirical_distribution.ECDF屬性的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: fit_transform
# 需要導入模塊: from statsmodels.distributions import empirical_distribution [as 別名]
# 或者: from statsmodels.distributions.empirical_distribution import ECDF [as 別名]
def fit_transform(self, X, y=None):
"""Normalize numerical columns.
Args:
X (pandas.DataFrame) : numerical columns to normalize
Returns:
(pandas.DataFrame): normalized numerical columns
"""
self.ecdfs = [None] * X.shape[1]
for col in range(X.shape[1]):
self.ecdfs[col] = ECDF(X[col].values)
X[col] = self._transform_col(X[col], col)
return X
示例2: __init__
# 需要導入模塊: from statsmodels.distributions import empirical_distribution [as 別名]
# 或者: from statsmodels.distributions.empirical_distribution import ECDF [as 別名]
def __init__(self, n_label=10, sample=100000, random_state=42):
"""Initialize a QuantileEncoder class object.
Args:
n_label (int): the number of labels to be created.
sample (int or float): the number or fraction of samples for ECDF
"""
self.n_label = n_label
self.sample = sample
self.random_state = random_state
示例3: fit
# 需要導入模塊: from statsmodels.distributions import empirical_distribution [as 別名]
# 或者: from statsmodels.distributions.empirical_distribution import ECDF [as 別名]
def fit(self, X, y=None):
"""Get empirical CDFs of numerical features.
Args:
X (pandas.DataFrame): numerical features to encode
Returns:
A trained QuantileEncoder object.
"""
def _calculate_ecdf(x):
return ECDF(x[~np.isnan(x)])
if self.sample >= X.shape[0]:
self.ecdfs = X.apply(_calculate_ecdf, axis=0)
elif self.sample > 1:
self.ecdfs = X.sample(n=self.sample,
random_state=self.random_state).apply(
_calculate_ecdf, axis=0
)
else:
self.ecdfs = X.sample(frac=self.sample,
random_state=self.random_state).apply(
_calculate_ecdf, axis=0
)
return self
示例4: calculate_empirical_pvalue
# 需要導入模塊: from statsmodels.distributions import empirical_distribution [as 別名]
# 或者: from statsmodels.distributions.empirical_distribution import ECDF [as 別名]
def calculate_empirical_pvalue(local_area, dpsi_abs_value):
abs_local_area = [abs(val) for val in local_area]
ecdf = ECDF(abs_local_area)
# It is divided by 2 because we are using abs(deltaPSI) values and therefore it is a one-tailed test
event_pvalue = (1.0 - ecdf(dpsi_abs_value)) * 0.5
return event_pvalue
示例5: ecdf
# 需要導入模塊: from statsmodels.distributions import empirical_distribution [as 別名]
# 或者: from statsmodels.distributions.empirical_distribution import ECDF [as 別名]
def ecdf(x):
return ECDF(x)
示例6: compute_group
# 需要導入模塊: from statsmodels.distributions import empirical_distribution [as 別名]
# 或者: from statsmodels.distributions.empirical_distribution import ECDF [as 別名]
def compute_group(cls, data, scales, **params):
# If n is None, use raw values; otherwise interpolate
if params['n'] is None:
x = np.unique(data['x'])
else:
x = np.linspace(data['x'].min(), data['x'].max(),
params['n'])
y = ECDF(data['x'])(x)
res = pd.DataFrame({'x': x, 'y': y})
return res
示例7: test_cdf_sample_consistency
# 需要導入模塊: from statsmodels.distributions import empirical_distribution [as 別名]
# 或者: from statsmodels.distributions.empirical_distribution import ECDF [as 別名]
def test_cdf_sample_consistency(self):
from statsmodels.distributions.empirical_distribution import ECDF
model = EconDensity()
x_cond = np.asarray([0.1 for _ in range(200000)])
_, y_sample = model.simulate_conditional(x_cond)
emp_cdf = ECDF(y_sample.flatten())
cdf = lambda y: model.cdf(x_cond, y)
mean_cdf_diff = np.mean(np.abs(emp_cdf(y_sample).flatten() - cdf(y_sample).flatten()))
self.assertLessEqual(mean_cdf_diff, 0.01)
示例8: omega_empirical
# 需要導入模塊: from statsmodels.distributions import empirical_distribution [as 別名]
# 或者: from statsmodels.distributions.empirical_distribution import ECDF [as 別名]
def omega_empirical(returns, target_rtn=0, log=True, plot=False, steps=1000):
"""
Omega Ratio based on empirical distribution.
"""
# validate_return_type(return_type)
if not log:
returns = pct_to_log_return(returns)
# TODO
ecdf = sde.ECDF(returns)
# Generate computation space
x = np.linspace(start=returns.min(), stop=returns.max(), num=steps)
y = ecdf(x)
norm_cdf = ss.norm.cdf(x, loc=returns.mean(), scale=returns.std(ddof=1))
# Plot empirical distribution CDF versus Normal CDF with same mean and
# stdev
if plot:
fig, ax = plt.subplots()
fig.set_size_inches((12, 6))
ax.plot(x, y, c="r", ls="--", lw=1.5, alpha=0.8, label="ECDF")
ax.plot(x, norm_cdf, alpha=0.3, ls="-", c="b", lw=5, label="Normal CDF")
ax.legend(loc="best")
plt.show(fig)
plt.close(fig)
# TODO calculate omega ratio
示例9: _interpolate_HSD_dict
# 需要導入模塊: from statsmodels.distributions import empirical_distribution [as 別名]
# 或者: from statsmodels.distributions.empirical_distribution import ECDF [as 別名]
def _interpolate_HSD_dict(self):
"""Method to extrapolate input data.
This method uses a non-parametric approach to expand the input
recharge array to the length of number of iterations. Output is
a new dictionary of interpolated recharge for each HSD id.
"""
HSD_dict = copy.deepcopy(self._HSD_dict)
# First generate interpolated Re for each HSD grid
Yrand = np.sort(np.random.rand(self._n))
# n random numbers (0 to 1) in a column
for vkey in HSD_dict.keys():
if isinstance(HSD_dict[vkey], int):
continue # loop back up if value is integer (e.g. -9999)
Re_temp = HSD_dict[vkey] # an array of annual Re for 1 HSD grid
Fx = ECDF(Re_temp) # instantiate to get probabilities with Re
Fx_ = Fx(Re_temp) # probability array associated with Re data
# interpolate function based on recharge data & probability
f = interpolate.interp1d(
Fx_, Re_temp, bounds_error=False, fill_value=min(Re_temp)
)
# array of Re interpolated from Yrand probabilities (n count)
Re_interpolated = f(Yrand)
# replace values in HSD_dict with interpolated Re
HSD_dict[vkey] = Re_interpolated
self._interpolated_HSD_dict = HSD_dict
示例10: ecdfer
# 需要導入模塊: from statsmodels.distributions import empirical_distribution [as 別名]
# 或者: from statsmodels.distributions.empirical_distribution import ECDF [as 別名]
def ecdfer(df: pd.DataFrame,
ascending: bool = True,
prediction_column: str = "prediction",
ecdf_column: str = "prediction_ecdf",
max_range: int = 1000) -> LearnerReturnType:
"""
Learns an Empirical Cumulative Distribution Function from the specified column
in the input DataFrame. It is usually used in the prediction column to convert
a predicted probability into a score from 0 to 1000.
Parameters
----------
df : Pandas' pandas.DataFrame
A Pandas' DataFrame that must contain a `prediction_column` columns.
ascending : bool
Whether to compute an ascending ECDF or a descending one.
prediction_column : str
The name of the column in `df` to learn the ECDF from.
ecdf_column : str
The name of the new ECDF column added by this function
max_range : int
The maximum value for the ECDF. It will go will go
from 0 to max_range.
"""
if ascending:
base = 0
sign = 1
else:
base = max_range
sign = -1
values = df[prediction_column]
ecdf = ed.ECDF(values)
def p(new_df: pd.DataFrame) -> pd.DataFrame:
return new_df.assign(**{ecdf_column: (base + sign * max_range * ecdf(new_df[prediction_column]))})
p.__doc__ = learner_pred_fn_docstring("ecdefer")
log = {'ecdfer': {
'nobs': len(values),
'prediction_column': prediction_column,
'ascending': ascending,
'transformed_column': [ecdf_column]}}
return p, p(df), log