當前位置: 首頁>>代碼示例>>Python>>正文


Python api.OLS屬性代碼示例

本文整理匯總了Python中statsmodels.api.OLS屬性的典型用法代碼示例。如果您正苦於以下問題:Python api.OLS屬性的具體用法?Python api.OLS怎麽用?Python api.OLS使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在statsmodels.api的用法示例。


在下文中一共展示了api.OLS屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: model_fit_to_dataframe

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import OLS [as 別名]
def model_fit_to_dataframe(fit):
        """
        Take an object containing a statsmodels OLS model fit and extact
        the main model fit metrics into a data frame.

        Parameters
        ----------
        fit : a statsmodels fit object
            Model fit object obtained from a linear model trained using
            `statsmodels.OLS`.

        Returns
        -------
        df_fit : pandas DataFrame
            Data frame with the main model fit metrics.
        """

        df_fit = pd.DataFrame({"N responses": [int(fit.nobs)]})
        df_fit['N features'] = int(fit.df_model)
        df_fit['R2'] = fit.rsquared
        df_fit['R2_adjusted'] = fit.rsquared_adj
        return df_fit 
開發者ID:EducationalTestingService,項目名稱:rsmtool,代碼行數:24,代碼來源:modeler.py

示例2: setup_class

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import OLS [as 別名]
def setup_class(cls):
        '''
        Test Gaussian family with canonical identity link
        '''
        # Test Precisions
        cls.decimal_resids = DECIMAL_3
        cls.decimal_params = DECIMAL_2
        cls.decimal_bic = DECIMAL_0
        cls.decimal_bse = DECIMAL_3

        from statsmodels.datasets.longley import load
        cls.data = load()
        cls.data.exog = add_constant(cls.data.exog, prepend=False)
        params = sm.OLS(cls.data.endog, cls.data.exog).fit().params
        cls.res1 = GLM(cls.data.endog, cls.data.exog,
                        family=sm.families.Gaussian()).fit(start_params=params)
        from .results.results_glm import Longley
        cls.res2 = Longley() 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:20,代碼來源:test_glm.py

示例3: test_framing_example_formula

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import OLS [as 別名]
def test_framing_example_formula():

    cur_dir = os.path.dirname(os.path.abspath(__file__))
    data = pd.read_csv(os.path.join(cur_dir, 'results', "framing.csv"))

    probit = sm.families.links.probit
    outcome_model = sm.GLM.from_formula("cong_mesg ~ emo + treat + age + educ + gender + income",
                                        data, family=sm.families.Binomial(link=probit()))

    mediator_model = sm.OLS.from_formula("emo ~ treat + age + educ + gender + income", data)

    med = Mediation(outcome_model, mediator_model, "treat", "emo",
                    outcome_fit_kwargs={'atol': 1e-11})

    np.random.seed(4231)
    med_rslt = med.fit(method='boot', n_rep=100)
    diff = np.asarray(med_rslt.summary() - framing_boot_4231)
    assert_allclose(diff, 0, atol=1e-6)

    np.random.seed(4231)
    med_rslt = med.fit(method='parametric', n_rep=100)
    diff = np.asarray(med_rslt.summary() - framing_para_4231)
    assert_allclose(diff, 0, atol=1e-6) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:25,代碼來源:test_mediation.py

示例4: _model2dataframe

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import OLS [as 別名]
def _model2dataframe(model_endog, model_exog, model_type=OLS, **kwargs):
    """return a series containing the summary of a linear model

    All the exceding parameters will be redirected to the linear model
    """
    # create the linear model and perform the fit
    model_result = model_type(model_endog, model_exog, **kwargs).fit()
    # keeps track of some global statistics
    statistics = pd.Series({'r2': model_result.rsquared,
                  'adj_r2': model_result.rsquared_adj})
    # put them togher with the result for each term
    result_df = pd.DataFrame({'params': model_result.params,
                              'pvals': model_result.pvalues,
                              'std': model_result.bse,
                              'statistics': statistics})
    # add the complexive results for f-value and the total p-value
    fisher_df = pd.DataFrame({'params': {'_f_test': model_result.fvalue},
                              'pvals': {'_f_test': model_result.f_pvalue}})
    # merge them and unstack to obtain a hierarchically indexed series
    res_series = pd.concat([result_df, fisher_df]).unstack()
    return res_series.dropna() 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:23,代碼來源:multilinear.py

示例5: test_combine

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import OLS [as 別名]
def test_combine(self):

        np.random.seed(3897)
        x1 = np.random.normal(size=300)
        x2 = np.random.normal(size=300)
        y = x1 + x2 + np.random.normal(size=300)
        x1[0:100] = np.nan
        x2[250:] = np.nan
        df = pd.DataFrame({"x1": x1, "x2": x2, "y": y})
        idata = mice.MICEData(df)
        mi = mice.MICE("y ~ x1 + x2", sm.OLS, idata, n_skip=20)
        result = mi.fit(10, 20)

        fmi = np.asarray([ 0.1920533 ,  0.1587287 ,  0.33174032])
        assert_allclose(result.frac_miss_info, fmi, atol=1e-5)

        params = np.asarray([-0.05397474,  0.97273307,  1.01652293])
        assert_allclose(result.params, params, atol=1e-5)

        tvalues = np.asarray([ -0.84781698,  15.10491582,  13.59998039])
        assert_allclose(result.tvalues, tvalues, atol=1e-5) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:23,代碼來源:test_mice.py

示例6: fit_regularized

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import OLS [as 別名]
def fit_regularized(self, method="elastic_net", alpha=0.,
                        L1_wt=1., start_params=None, profile_scale=False,
                        refit=False, **kwargs):
        # Docstring attached below

        # Need to adjust since RSS/n term in elastic net uses nominal
        # n in denominator
        if self.sigma is not None:
            alpha = alpha * np.sum(1 / np.diag(self.sigma)) / len(self.endog)

        rslt = OLS(self.wendog, self.wexog).fit_regularized(
            method=method, alpha=alpha,
            L1_wt=L1_wt,
            start_params=start_params,
            profile_scale=profile_scale,
            refit=refit, **kwargs)

        from statsmodels.base.elastic_net import (
            RegularizedResults, RegularizedResultsWrapper)
        rrslt = RegularizedResults(self, rslt.params)
        return RegularizedResultsWrapper(rrslt) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:23,代碼來源:linear_model.py

示例7: get_influence

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import OLS [as 別名]
def get_influence(self):
        """
        get an instance of Influence with influence and outlier measures

        Returns
        -------
        infl : Influence instance
            the instance has methods to calculate the main influence and
            outlier measures for the OLS regression

        See also
        --------
        statsmodels.stats.outliers_influence.OLSInfluence
        """
        from statsmodels.stats.outliers_influence import OLSInfluence
        return OLSInfluence(self) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:18,代碼來源:linear_model.py

示例8: ind_reg_ret

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import OLS [as 別名]
def ind_reg_ret(ind_ret,ret):
    '''
    用行業收益率去回歸股票收益率,得到股票在行業因子上的暴露。我們這裏隻算個暴露,就不關心鮮豬肚了
    :param DataFrame ind_ret: 行業收益率(月份*行業數)
    :param DataFrame ret: 股票收益率(月份*股票數)
    :return:
    '''
    #顯著的pvalue閾值定在0.1
    pvalue_threshold=0.1
    ind_loading=np.zeros([ret.shape[1],ind_ret.shape[1]])
    # 依次取出每一隻股票的收益率,與行業收益率做多元回歸
    for i in range(ret.shape[1]):
        # 取出一個行業來與股票做回歸
        for j in range(ind_ret.shape[1]):
            model=sm.OLS(ret.values[:,i],ind_ret.values[:,j]).fit()
            #將回歸係數寫入暴露矩陣
            ind_loading[i,j]=model.params[0]
        #對於pvalue小於閾值(顯著)的因子,將其對應的significant_stocks_list加1
    ind_loading=pd.DataFrame(ind_loading,columns=ind_ret.columns)
    return ind_loading 
開發者ID:icezerowjj,項目名稱:MultipleFactorRiskModel,代碼行數:22,代碼來源:Get_flow_ev.py

示例9: ret_reg_loading

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import OLS [as 別名]
def ret_reg_loading(tech_loading,ret,dummy):
    '''
    取每月每個指標111個股票的Loading去回歸當月這111個股票的收益率,判斷是否顯著。根據判斷結果來篩選變量
    :param tech_loading:
    :param ret:
    :return:
    '''
    # 初始化顯著列表
    significant_days=dict()
    for tech in tech_loading.columns:
        significant_days[tech]=0
    # 取每個指標在111隻股票上的loading做自變量
    for tech in tech_loading.columns:
        # 取某一個月111隻股票的收益率做因變量
        for i in range(ret.shape[0]):
            model = sm.OLS(ret.iloc[i,:].values, pd.concat([tech_loading[tech],dummy],axis=1).values).fit()
            pvalue=model.pvalues[0]
            if pvalue<0.1:
                significant_days[tech]+=1
    return significant_days 
開發者ID:icezerowjj,項目名稱:MultipleFactorRiskModel,代碼行數:22,代碼來源:own_tech.py

示例10: reg_m

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import OLS [as 別名]
def reg_m(y, x, estimator, weights=None):
    ones = np.ones(len(x[0]))
    X = sm.add_constant(np.column_stack((x[0], ones)))
    for ele in x[1:]:
        X = sm.add_constant(np.column_stack((ele, X)))

    if estimator=='ols':
        return sm.OLS(y, X).fit()

    elif estimator=='wls':
        return sm.WLS(y, X, weights).fit()

    elif estimator=='gls':
        return sm.GLS(y, X).fit()

    return None

############################
#Run general linear regression
####func array contains the array of functions consdered in the regression
####params coefficients are reversed; the first param coefficient corresponds to the last function in func array
####notice the independent vectors are given in dictionary format, egs:{'bob':[1,2,3,4,5],'mary':[1,2,3,4,5]} 
開發者ID:MacroConnections,項目名稱:DIVE-backend,代碼行數:24,代碼來源:fit.py

示例11: trainModel

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import OLS [as 別名]
def trainModel(X, Y):
    """
    訓練模型
    """
    model = sm.OLS(Y, X) # 創建一個線性模型
    re = model.fit()
    return re 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:9,代碼來源:2_linear_statsmodels.py

示例12: hedge_ratio

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import OLS [as 別名]
def hedge_ratio(Y, X, add_const=True):
    if add_const:
        X = sm.add_constant(X)
        model = sm.OLS(Y, X).fit()
        return model.params[1]
    model = sm.OLS(Y, X).fit()
    return model.params.values 
開發者ID:vsmolyakov,項目名稱:fin,代碼行數:9,代碼來源:pairs_trading.py

示例13: estimate_treatment_effect

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import OLS [as 別名]
def estimate_treatment_effect(covariates, treatment, outcome):
    """Run ordinary least squares to estimate causal effect of treatment variable on the outcome Y.

    Parameters
    ----------
        covariates: `np.ndarray`
            Array of shape [num_samples, num_features] of features
        treatment:  `np.ndarray`
            Binary array of shape [num_samples]  indicating treatment status for each
            sample.
        outcome:  `np.ndarray`
            Array of shape [num_samples] containing the observed outcome for each sample.

    Returns
    -------
        result: `whynot.framework.InferenceResult`
            InferenceResult object for this procedure

    """
    features = np.copy(covariates)
    treatment = treatment.reshape(-1, 1)
    features = np.concatenate([treatment, features], axis=1)
    features = sm.add_constant(features, prepend=True, has_constant="add")

    # Only time model fitting, not preprocessing
    start_time = perf_counter()
    model = sm.OLS(outcome, features)
    results = model.fit()
    stop_time = perf_counter()

    # Treatment is the second variable (first is the constant offset)
    ate = results.params[1]
    stderr = results.bse[1]
    conf_int = (ate - 1.96 * stderr, ate + 1.96 * stderr)
    return InferenceResult(
        ate=ate,
        stderr=stderr,
        ci=conf_int,
        individual_effects=None,
        elapsed_time=stop_time - start_time,
    ) 
開發者ID:zykls,項目名稱:whynot,代碼行數:43,代碼來源:ols.py

示例14: main

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import OLS [as 別名]
def main():
    original_data = extract_data()
    splitted_data = split_data(original_data)
    useful_data = extract_useful_data(splitted_data)
    plot_data(useful_data)
    convert_image()
    returns = np.asarray(find_returns(useful_data))
    training_data = np.asarray(get_pixel_values())
    training_data = sm.add_constant(training_data, has_constant='add')
    results = sm.OLS(returns[0:4340], training_data[0:4340]).fit()
    y_in_sample = results.predict(training_data[0:4340])
    r2 = r_squared(returns[0:4340], y_in_sample)
    print r2 
開發者ID:JasonDoingGreat,項目名稱:Convolutional-Networks-for-Stock-Predicting,代碼行數:15,代碼來源:main.py

示例15: regression

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import OLS [as 別名]
def regression(df):
        """
        Create linear regression of time series data with a lag of 1.

        Parameters:
            - df: The dataframe with the stock data.

        Returns:
            X, Y, and the fitted statsmodels linear regression
        """
        X = df.close.shift().dropna()
        Y = df.close[1:]
        return X, Y, sm.OLS(Y, X).fit() 
開發者ID:stefmolin,項目名稱:stock-analysis,代碼行數:15,代碼來源:stock_modeler.py


注:本文中的statsmodels.api.OLS屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。