當前位置: 首頁>>代碼示例>>Python>>正文


Python api.GLM屬性代碼示例

本文整理匯總了Python中statsmodels.api.GLM屬性的典型用法代碼示例。如果您正苦於以下問題:Python api.GLM屬性的具體用法?Python api.GLM怎麽用?Python api.GLM使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在statsmodels.api的用法示例。


在下文中一共展示了api.GLM屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: setup_class

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import GLM [as 別名]
def setup_class(cls):
        fweights = [1, 1, 1, 2, 2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2, 3, 3]
        # faking aweights by using normalized freq_weights
        fweights = np.array(fweights)
        wsum = fweights.sum()
        nobs = len(cpunish_data.endog)
        aweights = fweights / wsum * nobs

        cls.res1 = GLM(cpunish_data.endog, cpunish_data.exog,
                    family=sm.families.Poisson(), var_weights=aweights).fit()
        # compare with discrete, start close to save time
        modd = discrete.Poisson(cpunish_data.endog, cpunish_data.exog)

        # Need to copy to avoid inplace adjustment
        from copy import copy
        cls.res2 = copy(res_stata.results_poisson_aweight_nonrobust)
        cls.res2.resids = cls.res2.resids.copy()

        # Need to adjust resids for pearson and deviance to add weights
        cls.res2.resids[:, 3:5] *= np.sqrt(aweights[:, np.newaxis])


# prob_weights fail with HC, not properly implemented yet 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:25,代碼來源:test_glm_weights.py

示例2: test_warnings_raised

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import GLM [as 別名]
def test_warnings_raised():
    if sys.version_info < (3, 4):
        raise SkipTest
    weights = [1, 1, 1, 2, 2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2, 3, 3]
    # faking aweights by using normalized freq_weights
    weights = np.array(weights)

    gid = np.arange(1, 17 + 1) // 2

    cov_kwds = {'groups': gid, 'use_correction': False}
    with warnings.catch_warnings(record=True) as w:
        res1 = GLM(cpunish_data.endog, cpunish_data.exog,
                   family=sm.families.Poisson(), freq_weights=weights
                   ).fit(cov_type='cluster', cov_kwds=cov_kwds)
        res1.summary()
        assert len(w) >= 1

    with warnings.catch_warnings(record=True) as w:
        res1 = GLM(cpunish_data.endog, cpunish_data.exog,
                   family=sm.families.Poisson(), var_weights=weights
                   ).fit(cov_type='cluster', cov_kwds=cov_kwds)
        res1.summary()
        assert len(w) >= 1 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:25,代碼來源:test_glm_weights.py

示例3: test_incompatible_input

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import GLM [as 別名]
def test_incompatible_input():
    weights = [1, 1, 1, 2, 2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2, 3, 3]
    exog = cpunish_data.exog
    endog = cpunish_data.endog
    family = sm.families.Poisson()
    # Too short
    assert_raises(ValueError, GLM, endog, exog, family=family,
                  freq_weights=weights[:-1])
    assert_raises(ValueError, GLM, endog, exog, family=family,
                  var_weights=weights[:-1])
    # Too long
    assert_raises(ValueError, GLM, endog, exog, family=family,
                  freq_weights=weights + [3])
    assert_raises(ValueError, GLM, endog, exog, family=family,
                  var_weights=weights + [3])

    # Too many dimensions
    assert_raises(ValueError, GLM, endog, exog, family=family,
                  freq_weights=[weights, weights])
    assert_raises(ValueError, GLM, endog, exog, family=family,
                  var_weights=[weights, weights]) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:23,代碼來源:test_glm_weights.py

示例4: setup_class

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import GLM [as 別名]
def setup_class(cls):
        '''
        Test Gaussian family with canonical identity link
        '''
        # Test Precisions
        cls.decimal_resids = DECIMAL_3
        cls.decimal_params = DECIMAL_2
        cls.decimal_bic = DECIMAL_0
        cls.decimal_bse = DECIMAL_3

        from statsmodels.datasets.longley import load
        cls.data = load()
        cls.data.exog = add_constant(cls.data.exog, prepend=False)
        cls.res1 = GLM(cls.data.endog, cls.data.exog,
                        family=sm.families.Gaussian()).fit()
        from .results.results_glm import Longley
        cls.res2 = Longley() 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:19,代碼來源:test_glm.py

示例5: test_score_test_OLS

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import GLM [as 別名]
def test_score_test_OLS():
    # nicer example than Longley
    from statsmodels.regression.linear_model import OLS
    np.random.seed(5)
    nobs = 100
    sige = 0.5
    x = np.random.uniform(0, 1, size=(nobs, 5))
    x[:, 0] = 1
    beta = 1. / np.arange(1., x.shape[1] + 1)
    y = x.dot(beta) + sige * np.random.randn(nobs)

    res_ols = OLS(y, x).fit()
    res_olsc = OLS(y, x[:, :-2]).fit()
    co = res_ols.compare_lm_test(res_olsc, demean=False)

    res_glm = GLM(y, x[:, :-2], family=sm.families.Gaussian()).fit()
    co2 = res_glm.model.score_test(res_glm.params, exog_extra=x[:, -2:])
    # difference in df_resid versus nobs in scale see #1786
    assert_allclose(co[0] * 97 / 100., co2[0], rtol=1e-13) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:21,代碼來源:test_glm.py

示例6: test_formula_missing_exposure

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import GLM [as 別名]
def test_formula_missing_exposure():
    # see 2083
    import statsmodels.formula.api as smf
    import pandas as pd

    d = {'Foo': [1, 2, 10, 149], 'Bar': [1, 2, 3, np.nan],
         'constant': [1] * 4, 'exposure' : np.random.uniform(size=4),
         'x': [1, 3, 2, 1.5]}
    df = pd.DataFrame(d)

    family = sm.families.Gaussian(link=sm.families.links.log())

    mod = smf.glm("Foo ~ Bar", data=df, exposure=df.exposure,
                  family=family)
    assert_(type(mod.exposure) is np.ndarray, msg='Exposure is not ndarray')

    exposure = pd.Series(np.random.uniform(size=5))
    df.loc[3, 'Bar'] = 4   # nan not relevant for Valueerror for shape mismatch
    assert_raises(ValueError, smf.glm, "Foo ~ Bar", data=df,
                  exposure=exposure, family=family)
    assert_raises(ValueError, GLM, df.Foo, df[['constant', 'Bar']],
                  exposure=exposure, family=family) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:24,代碼來源:test_glm.py

示例7: test_wtd_patsy_missing

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import GLM [as 別名]
def test_wtd_patsy_missing():
    from statsmodels.datasets.cpunish import load
    import pandas as pd
    data = load()
    data.exog[0, 0] = np.nan
    data.endog[[2, 4, 6, 8]] = np.nan
    data.pandas = pd.DataFrame(data.exog, columns=data.exog_name)
    data.pandas['EXECUTIONS'] = data.endog
    weights = np.arange(1, len(data.endog)+1)
    formula = """EXECUTIONS ~ INCOME + PERPOVERTY + PERBLACK + VC100k96 +
                 SOUTH + DEGREE"""
    mod_misisng = GLM.from_formula(formula, data=data.pandas,
                                   freq_weights=weights)
    assert_equal(mod_misisng.freq_weights.shape[0],
                 mod_misisng.endog.shape[0])
    assert_equal(mod_misisng.freq_weights.shape[0],
                 mod_misisng.exog.shape[0])
    assert_equal(mod_misisng.freq_weights.shape[0], 12)
    keep_weights = np.array([2,  4,  6,  8, 10, 11, 12, 13, 14, 15, 16, 17])
    assert_equal(mod_misisng.freq_weights, keep_weights) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:22,代碼來源:test_glm.py

示例8: test_framing_example_formula

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import GLM [as 別名]
def test_framing_example_formula():

    cur_dir = os.path.dirname(os.path.abspath(__file__))
    data = pd.read_csv(os.path.join(cur_dir, 'results', "framing.csv"))

    probit = sm.families.links.probit
    outcome_model = sm.GLM.from_formula("cong_mesg ~ emo + treat + age + educ + gender + income",
                                        data, family=sm.families.Binomial(link=probit()))

    mediator_model = sm.OLS.from_formula("emo ~ treat + age + educ + gender + income", data)

    med = Mediation(outcome_model, mediator_model, "treat", "emo",
                    outcome_fit_kwargs={'atol': 1e-11})

    np.random.seed(4231)
    med_rslt = med.fit(method='boot', n_rep=100)
    diff = np.asarray(med_rslt.summary() - framing_boot_4231)
    assert_allclose(diff, 0, atol=1e-6)

    np.random.seed(4231)
    med_rslt = med.fit(method='parametric', n_rep=100)
    diff = np.asarray(med_rslt.summary() - framing_para_4231)
    assert_allclose(diff, 0, atol=1e-6) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:25,代碼來源:test_mediation.py

示例9: test_framing_example_moderator_formula

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import GLM [as 別名]
def test_framing_example_moderator_formula():

    cur_dir = os.path.dirname(os.path.abspath(__file__))
    data = pd.read_csv(os.path.join(cur_dir, 'results', "framing.csv"))

    probit = sm.families.links.probit
    outcome_model = sm.GLM.from_formula("cong_mesg ~ emo + treat*age + emo*age + educ + gender + income",
                                        data, family=sm.families.Binomial(link=probit()))

    mediator_model = sm.OLS.from_formula("emo ~ treat*age + educ + gender + income", data)

    moderators = {"age" : 20}
    med = Mediation(outcome_model, mediator_model, "treat", "emo",
                    moderators=moderators)

    np.random.seed(4231)
    med_rslt = med.fit(method='parametric', n_rep=100)
    diff = np.asarray(med_rslt.summary() - framing_moderated_4231)
    assert_allclose(diff, 0, atol=1e-6) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:21,代碼來源:test_mediation.py

示例10: setup_class

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import GLM [as 別名]
def setup_class(cls):

        # generate artificial data
        np.random.seed(98765678)
        nobs = 200
        rvs = np.random.randn(nobs,6)
        data_exog = rvs
        data_exog = sm.add_constant(data_exog, prepend=False)
        xbeta = 0.1 + 0.1*rvs.sum(1)
        data_endog = np.random.poisson(np.exp(xbeta))

        #estimate discretemod.Poisson as benchmark
        cls.res_discrete = Poisson(data_endog, data_exog).fit(disp=0)

        mod_glm = sm.GLM(data_endog, data_exog, family=sm.families.Poisson())
        cls.res_glm = mod_glm.fit()

        #estimate generic MLE
        cls.mod = PoissonGMLE(data_endog, data_exog)
        cls.res = cls.mod.fit(start_params=0.9 * cls.res_discrete.params,
                                method='bfgs', disp=0) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:23,代碼來源:test_poisson.py

示例11: setup

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import GLM [as 別名]
def setup(self):
        #fit for each test, because results will be changed by test
        x = self.exog
        np.random.seed(987689)
        y = x.sum(1) + np.random.randn(x.shape[0])
        self.results = sm.GLM(y, self.exog).fit() 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:8,代碼來源:test_generic_methods.py

示例12: test_partial_residual_poisson

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import GLM [as 別名]
def test_partial_residual_poisson(self):

        np.random.seed(3446)

        n = 100
        p = 3
        exog = np.random.normal(size=(n, p))
        exog[:, 0] = 1
        lin_pred = 4 + exog[:, 1] + 0.2*exog[:, 2]**2
        expval = np.exp(lin_pred)
        endog = np.random.poisson(expval)

        model = sm.GLM(endog, exog, family=sm.families.Poisson())
        results = model.fit()

        for focus_col in 1, 2:
            for j in 0,1:
                if j == 0:
                    fig = plot_partial_residuals(results, focus_col)
                else:
                    fig = results.plot_partial_residuals(focus_col)
                ax = fig.get_axes()[0]
                add_lowess(ax)
                ax.set_position([0.1, 0.1, 0.8, 0.77])
                effect_str = ["Intercept", "Linear effect, slope=1",
                              "Quadratic effect"][focus_col]
                ti = "Partial residual plot"
                if j == 1:
                    ti += " (called as method)"
                ax.set_title(ti + "\nPoisson regression\n" +
                             effect_str)
                close_or_save(pdf, fig) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:34,代碼來源:test_regressionplots.py

示例13: test_ceres_poisson

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import GLM [as 別名]
def test_ceres_poisson(self):

        np.random.seed(3446)

        n = 100
        p = 3
        exog = np.random.normal(size=(n, p))
        exog[:, 0] = 1
        lin_pred = 4 + exog[:, 1] + 0.2*exog[:, 2]**2
        expval = np.exp(lin_pred)
        endog = np.random.poisson(expval)

        model = sm.GLM(endog, exog, family=sm.families.Poisson())
        results = model.fit()

        for focus_col in 1, 2:
            for j in 0, 1:
                if j == 0:
                    fig = plot_ceres_residuals(results, focus_col)
                else:
                    fig = results.plot_ceres_residuals(focus_col)
                ax = fig.get_axes()[0]
                add_lowess(ax)
                ax.set_position([0.1, 0.1, 0.8, 0.77])
                effect_str = ["Intercept", "Linear effect, slope=1",
                              "Quadratic effect"][focus_col]
                ti = "CERES plot"
                if j == 1:
                    ti += " (called as method)"
                ax.set_title(ti + "\nPoisson regression\n" +
                             effect_str)
                close_or_save(pdf, fig) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:34,代碼來源:test_regressionplots.py

示例14: _get_init_kwds

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import GLM [as 別名]
def _get_init_kwds(self):
        # this is a temporary fixup because exposure has been transformed
        # see #1609, copied from discrete_model.CountModel
        kwds = super(GLM, self)._get_init_kwds()
        if 'exposure' in kwds and kwds['exposure'] is not None:
            kwds['exposure'] = np.exp(kwds['exposure'])
        return kwds 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:9,代碼來源:generalized_linear_model.py

示例15: null

# 需要導入模塊: from statsmodels import api [as 別名]
# 或者: from statsmodels.api import GLM [as 別名]
def null(self):
        endog = self._endog
        model = self.model
        exog = np.ones((len(endog), 1))

        kwargs = model._get_init_kwds()
        kwargs.pop('family')
        if hasattr(self, '_offset_exposure'):
            return GLM(endog, exog, family=self.family,
                       **kwargs).fit().fittedvalues
        else:
            # correct if fitted is identical across observations
            wls_model = lm.WLS(endog, exog,
                               weights=self._iweights * self._n_trials)
            return wls_model.fit().fittedvalues 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:17,代碼來源:generalized_linear_model.py


注:本文中的statsmodels.api.GLM屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。