當前位置: 首頁>>代碼示例>>Python>>正文


Python sparse.COO屬性代碼示例

本文整理匯總了Python中sparse.COO屬性的典型用法代碼示例。如果您正苦於以下問題:Python sparse.COO屬性的具體用法?Python sparse.COO怎麽用?Python sparse.COO使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在sparse的用法示例。


在下文中一共展示了sparse.COO屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_scipy_sparse_interface

# 需要導入模塊: import sparse [as 別名]
# 或者: from sparse import COO [as 別名]
def test_scipy_sparse_interface():
    n = 100
    m = 10
    row = np.random.randint(0, n, size=n, dtype=np.uint16)
    col = np.random.randint(0, m, size=n, dtype=np.uint16)
    data = np.ones(n, dtype=np.uint8)

    inp = (data, (row, col))

    x = scipy.sparse.coo_matrix(inp)
    xx = sparse.COO(inp)

    assert_eq(x, xx, check_nnz=False)
    assert_eq(x.T, xx.T, check_nnz=False)
    assert_eq(xx.to_scipy_sparse(), x, check_nnz=False)
    assert_eq(COO.from_scipy_sparse(xx.to_scipy_sparse()), xx, check_nnz=False)

    assert_eq(x, xx, check_nnz=False)
    assert_eq(x.T.dot(x), xx.T.dot(xx), check_nnz=False)
    assert isinstance(x + xx, COO)
    assert isinstance(xx + x, COO) 
開發者ID:pydata,項目名稱:sparse,代碼行數:23,代碼來源:test_coo.py

示例2: test_caching

# 需要導入模塊: import sparse [as 別名]
# 或者: from sparse import COO [as 別名]
def test_caching():
    x = COO({(9, 9, 9): 1})
    assert (
        x[:].reshape((100, 10)).transpose().tocsr()
        is not x[:].reshape((100, 10)).transpose().tocsr()
    )

    x = COO({(9, 9, 9): 1}, cache=True)
    assert (
        x[:].reshape((100, 10)).transpose().tocsr()
        is x[:].reshape((100, 10)).transpose().tocsr()
    )

    x = COO({(1, 1, 1, 1, 1, 1, 1, 2): 1}, cache=True)

    for i in range(x.ndim):
        x.reshape(x.size)

    assert len(x._cache["reshape"]) < 5 
開發者ID:pydata,項目名稱:sparse,代碼行數:21,代碼來源:test_coo.py

示例3: test_clip

# 需要導入模塊: import sparse [as 別名]
# 或者: from sparse import COO [as 別名]
def test_clip():
    x = np.array([[0, 0, 1, 0, 2], [5, 0, 0, 3, 0]])

    s = sparse.COO.from_numpy(x)

    assert_eq(s.clip(min=1), x.clip(min=1))
    assert_eq(s.clip(max=3), x.clip(max=3))
    assert_eq(s.clip(min=1, max=3), x.clip(min=1, max=3))
    assert_eq(s.clip(min=1, max=3.0), x.clip(min=1, max=3.0))

    assert_eq(np.clip(s, 1, 3), np.clip(x, 1, 3))

    with pytest.raises(ValueError):
        s.clip()

    out = sparse.COO.from_numpy(np.zeros_like(x))
    out2 = s.clip(min=1, max=3, out=out)
    assert out is out2
    assert_eq(out, x.clip(min=1, max=3)) 
開發者ID:pydata,項目名稱:sparse,代碼行數:21,代碼來源:test_coo.py

示例4: test_setting_into_numpy_slice

# 需要導入模塊: import sparse [as 別名]
# 或者: from sparse import COO [as 別名]
def test_setting_into_numpy_slice():
    actual = np.zeros((5, 5))
    s = sparse.COO(data=[1, 1], coords=(2, 4), shape=(5,))
    # This calls s.__array__(dtype('float64')) which means that __array__
    # must accept a positional argument. If not this will raise, of course,
    # TypeError: __array__() takes 1 positional argument but 2 were given
    with auto_densify():
        actual[:, 0] = s

    # Might as well check the content of the result as well.
    expected = np.zeros((5, 5))
    expected[:, 0] = s.todense()
    assert_eq(actual, expected)

    # Without densification, setting is unsupported.
    with pytest.raises(RuntimeError):
        actual[:, 0] = s 
開發者ID:pydata,項目名稱:sparse,代碼行數:19,代碼來源:test_coo.py

示例5: get_adj

# 需要導入模塊: import sparse [as 別名]
# 或者: from sparse import COO [as 別名]
def get_adj(self, batch, seq_len):
		"""
		Returns the adjacency matrix required for applying GCN 

		Parameters
		----------
		batch:		batch returned by getBatch generator
		seq_len:	Maximum length of sentence in the batch

		Returns
		-------
		Adjacency matrix shape=[Number of dependency labels, Batch size, seq_len, seq_len]
		"""
		num_edges = np.sum(batch['elen'])
		b_ind     = np.expand_dims(np.repeat(np.arange(self.p.batch_size), batch['elen']), axis=1)
		e_ind     = np.reshape(batch['edges'], [-1, 3])[:num_edges]

		adj_ind   = np.concatenate([b_ind, e_ind], axis=1)
		adj_ind   = adj_ind[:, [3,0,1,2]]
		adj_data  = np.ones(num_edges, dtype=np.float32)

		return COO(adj_ind.T, adj_data, shape=(self.num_deLabel, self.p.batch_size, seq_len, seq_len)).todense() 
開發者ID:malllabiisc,項目名稱:WordGCN,代碼行數:24,代碼來源:syngcn.py

示例6: get_mult_function

# 需要導入模塊: import sparse [as 別名]
# 或者: from sparse import COO [as 別名]
def get_mult_function(mt: sparse.COO, gradeList,
                      grades_a=None, grades_b=None, filter_mask=None):
    '''
    Returns a function that implements the mult_table on two input multivectors
    '''
    if (filter_mask is None) and (grades_a is not None) and (grades_b is not None):
        # If not specified explicitly, we can specify sparseness by grade
        filter_mask = np.zeros(mt.nnz, dtype=bool)
        k_list, _, m_list = mt.coords
        for i in range(len(filter_mask)):
            if gradeList[k_list[i]] in grades_a:
                if gradeList[m_list[i]] in grades_b:
                    filter_mask[i] = 1
        filter_mask = sparse.COO(coords=mt.coords, data=filter_mask, shape=mt.shape)

    if filter_mask is not None:
        # We can pass the sparse filter mask directly
        mt = sparse.where(filter_mask, mt, mt.dtype.type(0))

        return _get_mult_function(mt)

    else:
        return _get_mult_function_runtime_sparse(mt) 
開發者ID:pygae,項目名稱:clifford,代碼行數:25,代碼來源:__init__.py

示例7: get_transition_array

# 需要導入模塊: import sparse [as 別名]
# 或者: from sparse import COO [as 別名]
def get_transition_array(self) -> Union[np.ndarray, sparse.COO]:
        """Return the transition matrix for the wrapped environment.

        Returns
        -------
        Union[np.ndarray, sparse.COO]
            The transition array, either a numpy array or a sparse coordinate based
            matrix. Shape (n_states, n_actions, n_states).
        """
        raise NotImplementedError() 
開發者ID:JohannesHeidecke,項目名稱:irl-benchmark,代碼行數:12,代碼來源:model_wrapper.py

示例8: array

# 需要導入模塊: import sparse [as 別名]
# 或者: from sparse import COO [as 別名]
def array(x, *args, **kwargs):
    if isinstance(x, sparse.SparseArray):
        return x

    if "dtype" in kwargs:
        dtype = kwargs["dtype"]
        return sparse.COO(np.asarray(x, dtype=dtype))

    return sparse.COO(np.asarray(x)) 
開發者ID:Quansight-Labs,項目名稱:unumpy,代碼行數:11,代碼來源:sparse_backend.py

示例9: stack

# 需要導入模塊: import sparse [as 別名]
# 或者: from sparse import COO [as 別名]
def stack(arrays, axis=0, compressed_axes=None):
    """
    Stack the input arrays along the given dimension.

    Parameters
    ----------
    arrays : Iterable[SparseArray]
        The input arrays to stack.
    axis : int, optional
        The axis along which to stack the input arrays.
    compressed_axes : iterable, optional
        The axes to compress if returning a GCXS array.

    Returns
    -------
    SparseArray
        The output stacked array.

    Raises
    ------
    ValueError
        If all elements of :code:`arrays` don't have the same fill-value.

    See Also
    --------
    numpy.stack : NumPy equivalent function
    """
    from ._coo import COO

    if any(isinstance(arr, COO) for arr in arrays):
        from ._coo import stack as coo_stack

        return coo_stack(arrays, axis)
    else:
        from ._compressed import stack as gcxs_stack

        return gcxs_stack(arrays, axis, compressed_axes) 
開發者ID:pydata,項目名稱:sparse,代碼行數:39,代碼來源:_common.py

示例10: concatenate

# 需要導入模塊: import sparse [as 別名]
# 或者: from sparse import COO [as 別名]
def concatenate(arrays, axis=0, compressed_axes=None):
    """
    Concatenate the input arrays along the given dimension.

    Parameters
    ----------
    arrays : Iterable[SparseArray]
        The input arrays to concatenate.
    axis : int, optional
        The axis along which to concatenate the input arrays. The default is zero.
    compressed_axes : iterable, optional
        The axes to compress if returning a GCXS array.

    Returns
    -------
    SparseArray
        The output concatenated array.

    Raises
    ------
    ValueError
        If all elements of :code:`arrays` don't have the same fill-value.

    See Also
    --------
    numpy.concatenate : NumPy equivalent function
    """
    from ._coo import COO

    if any(isinstance(arr, COO) for arr in arrays):
        from ._coo import concatenate as coo_concat

        return coo_concat(arrays, axis)
    else:
        from ._compressed import concatenate as gcxs_concat

        return gcxs_concat(arrays, axis, compressed_axes) 
開發者ID:pydata,項目名稱:sparse,代碼行數:39,代碼來源:_common.py

示例11: outer

# 需要導入模塊: import sparse [as 別名]
# 或者: from sparse import COO [as 別名]
def outer(a, b, out=None):
    """
    Return outer product of two sparse arrays.

    Parameters
    ----------
    a, b : sparse.SparseArray
        The input arrays.
    out : sparse.SparseArray
        The output array.
    
    Examples
    --------
    >>> import numpy as np
    >>> import sparse
    >>> a = sparse.COO(np.arange(4))
    >>> o = sparse.outer(a, a)
    >>> o.todense()
    array([[0, 0, 0, 0],
           [0, 1, 2, 3],
           [0, 2, 4, 6],
           [0, 3, 6, 9]])
    """
    from sparse import SparseArray, COO

    if isinstance(a, SparseArray):
        a = COO(a)
    if isinstance(b, SparseArray):
        b = COO(b)
    return np.multiply.outer(a.flatten(), b.flatten(), out=out) 
開發者ID:pydata,項目名稱:sparse,代碼行數:32,代碼來源:_common.py

示例12: test_ufunc_reductions

# 需要導入模塊: import sparse [as 別名]
# 或者: from sparse import COO [as 別名]
def test_ufunc_reductions(random_sparse, reduction, kwargs, axis, keepdims):
    x = random_sparse
    y = x.todense()
    xx = reduction(x, axis=axis, keepdims=keepdims, **kwargs)
    yy = reduction(y, axis=axis, keepdims=keepdims, **kwargs)
    assert_eq(xx, yy)
    # If not a scalar/1 element array, must be a sparse array
    if xx.size > 1:
        assert isinstance(xx, COO) 
開發者ID:pydata,項目名稱:sparse,代碼行數:11,代碼來源:test_coo.py

示例13: test_ufunc_reductions_kwargs

# 需要導入模塊: import sparse [as 別名]
# 或者: from sparse import COO [as 別名]
def test_ufunc_reductions_kwargs(reduction, kwargs):
    x = sparse.random((2, 3, 4), density=0.5)
    y = x.todense()
    xx = reduction(x, **kwargs)
    yy = reduction(y, **kwargs)
    assert_eq(xx, yy)
    # If not a scalar/1 element array, must be a sparse array
    if xx.size > 1:
        assert isinstance(xx, COO) 
開發者ID:pydata,項目名稱:sparse,代碼行數:11,代碼來源:test_coo.py

示例14: test_all_nan_reduction_warning

# 需要導入模塊: import sparse [as 別名]
# 或者: from sparse import COO [as 別名]
def test_all_nan_reduction_warning(reduction, axis):
    x = random_value_array(np.nan, 1.0)(2 * 3 * 4).reshape(2, 3, 4)
    s = COO.from_numpy(x)

    with pytest.warns(RuntimeWarning):
        getattr(sparse, reduction)(s, axis=axis) 
開發者ID:pydata,項目名稱:sparse,代碼行數:8,代碼來源:test_coo.py

示例15: test_large_reshape

# 需要導入模塊: import sparse [as 別名]
# 或者: from sparse import COO [as 別名]
def test_large_reshape():
    n = 100
    m = 10
    row = np.arange(
        n, dtype=np.uint16
    )  # np.random.randint(0, n, size=n, dtype=np.uint16)
    col = row % m  # np.random.randint(0, m, size=n, dtype=np.uint16)
    data = np.ones(n, dtype=np.uint8)

    x = COO((data, (row, col)), sorted=True, has_duplicates=False)

    assert_eq(x, x.reshape(x.shape)) 
開發者ID:pydata,項目名稱:sparse,代碼行數:14,代碼來源:test_coo.py


注:本文中的sparse.COO屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。