當前位置: 首頁>>代碼示例>>Python>>正文


Python mixture.GMM屬性代碼示例

本文整理匯總了Python中sklearn.mixture.GMM屬性的典型用法代碼示例。如果您正苦於以下問題:Python mixture.GMM屬性的具體用法?Python mixture.GMM怎麽用?Python mixture.GMM使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在sklearn.mixture的用法示例。


在下文中一共展示了mixture.GMM屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fit

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GMM [as 別名]
def fit(self, data_generator, force=False, test=False):
        if force or not self.storage.check_exists(self.model_path):
            self._transform = GMM(
                n_components=self.n_components,
                covariance_type=self.covariance_type,
                n_iter=self.n_iter, n_init=self.n_init)

            def mid_generator():
                for t, des in data_generator:
                    yield des

            X = np.vstack(mid_generator())
            if test:
                X = X[0:100000, :]
            self._transform.fit(X)
            joblib.dump(self._transform, self.model_path)
        else:
            self._transform = joblib.load(self.model_path) 
開發者ID:yassersouri,項目名稱:omgh,代碼行數:20,代碼來源:transforms.py

示例2: find_best_n_componenets

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GMM [as 別名]
def find_best_n_componenets(X, electrodes, event_id, bipolar, from_t, to_t, time_split, meg_data_dic, elec_data, gk_sigma):
    cond = utils.first_key(event_id)
    all_errors = []
    all_clusters = []
    for n_components in range(1, X.shape[0]):
        gmm = mixture.GMM(n_components=n_components, covariance_type='spherical')
        gmm.fit(X)
        clusters = gmm.predict(X)
        unique_clusters = np.unique(clusters)
        cluster_errors = []
        for cluster in unique_clusters:
            cluster_electrodes = np.array(electrodes)[np.where(clusters == cluster)].tolist()
            elec_errors, elec_ps = reconstruct_meg(event_id, cluster_electrodes, from_t, to_t, time_split, gk_sigma=gk_sigma,
                                                   plot_results=False, bipolar=bipolar, dont_calc_new_csd=True, all_meg_data=meg_data_dic,
                                                   elec_data=elec_data, njobs=1)
            cluster_errors.append(max(elec_errors[cond].values()))
        print(n_components, max(cluster_errors))
        all_clusters.append(clusters)
        all_errors.append(max(cluster_errors))
    utils.save((all_clusters, all_errors), get_pkl_file('{}_best_n_componenets'.format(cond)))
    plt.plot(all_errors)
    plt.show() 
開發者ID:pelednoam,項目名稱:mmvt,代碼行數:24,代碼來源:beamformers_electrodes_tweak.py

示例3: test_GMM_attributes

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GMM [as 別名]
def test_GMM_attributes():
    n_components, n_features = 10, 4
    covariance_type = 'diag'
    g = mixture.GMM(n_components, covariance_type, random_state=rng)
    weights = rng.rand(n_components)
    weights = weights / weights.sum()
    means = rng.randint(-20, 20, (n_components, n_features))

    assert_true(g.n_components == n_components)
    assert_true(g.covariance_type == covariance_type)

    g.weights_ = weights
    assert_array_almost_equal(g.weights_, weights)
    g.means_ = means
    assert_array_almost_equal(g.means_, means)

    covars = (0.1 + 2 * rng.rand(n_components, n_features)) ** 2
    g.covars_ = covars
    assert_array_almost_equal(g.covars_, covars)
    assert_raises(ValueError, g._set_covars, [])
    assert_raises(ValueError, g._set_covars,
                  np.zeros((n_components - 2, n_features)))

    assert_raises(ValueError, mixture.GMM, n_components=20,
                  covariance_type='badcovariance_type') 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:27,代碼來源:test_gmm.py

示例4: _setUp

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GMM [as 別名]
def _setUp(self):
        self.n_components = 10
        self.n_features = 4
        self.weights = rng.rand(self.n_components)
        self.weights = self.weights / self.weights.sum()
        self.means = rng.randint(-20, 20, (self.n_components, self.n_features))
        self.threshold = -0.5
        self.I = np.eye(self.n_features)
        self.covars = {
            'spherical': (0.1 + 2 * rng.rand(self.n_components,
                                             self.n_features)) ** 2,
            'tied': (make_spd_matrix(self.n_features, random_state=0)
                     + 5 * self.I),
            'diag': (0.1 + 2 * rng.rand(self.n_components,
                                        self.n_features)) ** 2,
            'full': np.array([make_spd_matrix(self.n_features, random_state=0)
                              + 5 * self.I for x in range(self.n_components)])}

    # This function tests the deprecated old GMM class 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:21,代碼來源:test_gmm.py

示例5: test_train_degenerate

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GMM [as 別名]
def test_train_degenerate(self, params='wmc'):
        # Train on degenerate data with 0 in some dimensions
        # Create a training set by sampling from the predefined
        # distribution.
        X = rng.randn(100, self.n_features)
        X.T[1:] = 0
        g = self.model(n_components=2,
                       covariance_type=self.covariance_type,
                       random_state=rng, min_covar=1e-3, n_iter=5,
                       init_params=params)
        with ignore_warnings(category=DeprecationWarning):
            g.fit(X)
            trainll = g.score(X)
        self.assertTrue(np.sum(np.abs(trainll / 100 / X.shape[1])) < 5)

    # This function tests the deprecated old GMM class 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:18,代碼來源:test_gmm.py

示例6: test_train_1d

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GMM [as 別名]
def test_train_1d(self, params='wmc'):
        # Train on 1-D data
        # Create a training set by sampling from the predefined
        # distribution.
        X = rng.randn(100, 1)
        # X.T[1:] = 0
        g = self.model(n_components=2,
                       covariance_type=self.covariance_type,
                       random_state=rng, min_covar=1e-7, n_iter=5,
                       init_params=params)
        with ignore_warnings(category=DeprecationWarning):
            g.fit(X)
            trainll = g.score(X)
            if isinstance(g, mixture.dpgmm._DPGMMBase):
                self.assertTrue(np.sum(np.abs(trainll / 100)) < 5)
            else:
                self.assertTrue(np.sum(np.abs(trainll / 100)) < 2)

    # This function tests the deprecated old GMM class 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:21,代碼來源:test_gmm.py

示例7: test_fit_predict

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GMM [as 別名]
def test_fit_predict():
    """
    test that gmm.fit_predict is equivalent to gmm.fit + gmm.predict
    """
    lrng = np.random.RandomState(101)

    n_samples, n_dim, n_comps = 100, 2, 2
    mu = np.array([[8, 8]])
    component_0 = lrng.randn(n_samples, n_dim)
    component_1 = lrng.randn(n_samples, n_dim) + mu
    X = np.vstack((component_0, component_1))

    for m_constructor in (mixture.GMM, mixture.VBGMM, mixture.DPGMM):
        model = m_constructor(n_components=n_comps, covariance_type='full',
                              min_covar=1e-7, n_iter=5,
                              random_state=np.random.RandomState(0))
        assert_fit_predict_correct(model, X)

    model = mixture.GMM(n_components=n_comps, n_iter=0)
    z = model.fit_predict(X)
    assert np.all(z == 0), "Quick Initialization Failed!"


# This function tests the deprecated old GMM class 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:26,代碼來源:test_gmm.py

示例8: test_aic

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GMM [as 別名]
def test_aic():
    # Test the aic and bic criteria
    n_samples, n_dim, n_components = 50, 3, 2
    X = rng.randn(n_samples, n_dim)
    SGH = 0.5 * (X.var() + np.log(2 * np.pi))  # standard gaussian entropy

    for cv_type in ['full', 'tied', 'diag', 'spherical']:
        g = mixture.GMM(n_components=n_components, covariance_type=cv_type,
                        random_state=rng, min_covar=1e-7)
        g.fit(X)
        aic = 2 * n_samples * SGH * n_dim + 2 * g._n_parameters()
        bic = (2 * n_samples * SGH * n_dim +
               np.log(n_samples) * g._n_parameters())
        bound = n_dim * 3. / np.sqrt(n_samples)
        assert_true(np.abs(g.aic(X) - aic) / n_samples < bound)
        assert_true(np.abs(g.bic(X) - bic) / n_samples < bound)


# This function tests the deprecated old GMM class 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:21,代碼來源:test_gmm.py

示例9: get_gmm_for_stack

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GMM [as 別名]
def get_gmm_for_stack(vals, thresh=10, num_sizes=2):
    '''  Assume no more than num_sizes font sizes present... '''
    if len(vals) > 30:
#         vals = [v for v in vals if vals.count(v) > 2]
#         counts = Counter(vals)
#         vals = [v for v in counts if counts[v] > 2]
        n_components = num_sizes
    elif len(vals) == 1:
        gmm = GMM()
        gmm.means_ = np.array(vals).reshape((1,1))
#         gmm.labels_ = np.array([0])
        return gmm
    else:
        n_components = 1
        
    gmm = GMM(n_components=2)
    gmm.fit(np.array(vals).reshape(len(vals), 1))    
    return gmm
    
#     while True:
#         gmm = GMM(n_components=n_components)
#         try:
#             gmm.fit(vals)
#         except:
#             print vals, n_components
#             raise
# #         gmm.labels_ = np.argsort(gmm.means_)
#         means = list(gmm.means_.copy().flatten())
#         means.sort()
#         if n_components > 1:
#             for i, m in enumerate(means[:-1]):
#                 if means[i+1] - m < thresh or not gmm.converged_:
#  
#                     n_components -= 1
#                     break
#             else:
#                 return gmm
#         elif n_components == 1:
#             return gmm 
開發者ID:zmr,項目名稱:namsel,代碼行數:41,代碼來源:formatter.py

示例10: GetGoalModel

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GMM [as 別名]
def GetGoalModel(self,objs,preset=None):
        if preset is None:
            robot = RobotFeatures()
        else:
            robot = RobotFeatures(preset=preset)

        if 'gripper' in objs:
            objs.remove('gripper')

        for obj in objs:
            robot.AddObject(obj)

        dims = robot.max_index
        K = self.action_model.n_components

        goal = GMM(n_components=K,covariance_type="full")
        goal.weights_ = self.action_model.weights_
        goal.means_ = np.zeros((K,dims))
        goal.covars_ = np.zeros((K,dims,dims))

        idx = robot.GetDiffIndices(objs)
        print objs

        for k in range(K):
            goal.means_[k,:] = self.action_model.means_[k,idx]
            for j in range(dims):
                goal.covars_[k,j,idx] = self.action_model.covars_[k,j,idx]

        return goal 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:31,代碼來源:skill.py

示例11: process

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GMM [as 別名]
def process(self):
        females, males = self.get_file_paths(self.females_training_path,
                                             self.males_training_path)
        # collect voice features
        female_voice_features = self.collect_features(females)
        male_voice_features   = self.collect_features(males)
        # generate gaussian mixture models
        females_gmm = GMM(n_components = 16, n_iter = 200, covariance_type='diag', n_init = 3)
        males_gmm   = GMM(n_components = 16, n_iter = 200, covariance_type='diag', n_init = 3)
        # fit features to models
        females_gmm.fit(female_voice_features)
        males_gmm.fit(male_voice_features)
        # save models
        self.save_gmm(females_gmm, "females")
        self.save_gmm(males_gmm,   "males") 
開發者ID:SuperKogito,項目名稱:Voice-based-gender-recognition,代碼行數:17,代碼來源:ModelsTrainer.py

示例12: estim_gmm_params

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GMM [as 別名]
def estim_gmm_params(features, prob):
    """ with given soft labeling (take the maxim) get the GMM parameters

    :param ndarray features:
    :param ndarray prob:
    :return:

    >>> np.random.seed(0)
    >>> prob = np.array([[1, 0]] * 30 + [[0, 1]] * 40)
    >>> fts = prob + np.random.random(prob.shape)
    >>> mm = estim_gmm_params(fts, prob)
    >>> mm['weights']
    [0.42857142857142855, 0.5714285714285714]
    >>> mm['means']
    array([[ 1.49537196,  0.53745455],
           [ 0.54199936,  1.42606497]])
    """
    nb_samples, nb_classes = prob.shape
    labels = np.argmax(prob, axis=1)
    gmm_params = {'weights': [], 'means': [], 'covars': []}
    for lb in range(nb_classes):
        labels_sel = (labels == lb)
        gmm_params['weights'].append(np.sum(labels_sel) / float(nb_samples))
        gmm_params['means'].append(np.mean(features[labels_sel], axis=0))
        gmm_params['covars'].append(np.cov(features[labels_sel]))
    for n in ['means', 'covars']:
        gmm_params[n] = np.array([m.tolist() for m in gmm_params[n]])
    return gmm_params 
開發者ID:Borda,項目名稱:pyImSegm,代碼行數:30,代碼來源:graph_cuts.py

示例13: estim_class_model_gmm

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GMM [as 別名]
def estim_class_model_gmm(features, nb_classes, init='kmeans'):
    """ from all features estimate Gaussian Mixture Model and assuming
    each cluster is a single class compute probability that each feature
    belongs to each class

    :param [[float]] features: list of features per segment
    :param int nb_classes: number of classes
    :param int init: initialisation
    :return [[float]]: probabilities that each feature belongs to each class

    >>> np.random.seed(0)
    >>> fts = np.row_stack([np.random.random((50, 3)) - 1,
    ...                     np.random.random((50, 3)) + 1])
    >>> mm = estim_class_model_gmm(fts, 2)
    >>> mm.predict_proba(fts).shape
    (100, 2)
    """
    logging.debug('estimate GMM for all given features %r and %i component',
                  features.shape, nb_classes)
    # http://scikit-learn.org/stable/modules/generated/sklearn.mixture.GMM.html
    gmm = mixture.GaussianMixture(n_components=nb_classes,
                                  covariance_type='full', max_iter=99)
    if init == 'kmeans':
        # http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
        kmeans = cluster.KMeans(n_clusters=nb_classes, init='k-means++',
                                n_jobs=-1)
        y = kmeans.fit_predict(features)
        gmm.fit(features, y)
    else:
        gmm.fit(features)
    logging.info('compute probability of each feature to all component')
    return gmm 
開發者ID:Borda,項目名稱:pyImSegm,代碼行數:34,代碼來源:graph_cuts.py

示例14: analyze_best_n_componenets

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GMM [as 別名]
def analyze_best_n_componenets(event_id, bipolar, from_t, to_t, time_split, gk_sigma=3,
        electrodes_positive=True, electrodes_normalize=True, njobs=4):
    cond = utils.first_key(event_id)
    all_clusters, all_errors = utils.load(get_pkl_file('{}_best_n_componenets'.format(cond)))
    electrodes, errors, pss = utils.load(get_pkl_file('{}_calc_p_for_each_electrode.pkl'.format(cond)))
    elec_data = load_electrodes_data(event_id, bipolar, electrodes, from_t, to_t,
        subtract_min=electrodes_positive, normalize_data=electrodes_normalize)
    meg_data_dic = load_all_dics(freqs_bin, event_id, bipolar, electrodes, from_t, to_t, gk_sigma, dont_calc_new_csd=True, njobs=njobs)

    X = utils.stack(pss)
    for k, cluster_error in enumerate(all_errors):
        print(k, cluster_error)
    plt.plot(all_errors)
    plt.show()

    gmm = mixture.GMM(n_components=22, covariance_type='spherical')
    gmm.fit(X)
    clusters = gmm.predict(X)
    unique_clusters = np.unique(clusters)
    cluster_errors = []
    for cluster in unique_clusters:
        cluster_electrodes = np.array(electrodes)[np.where(clusters == cluster)].tolist()
        elec_errors, elec_ps = reconstruct_meg(event_id, cluster_electrodes, from_t, to_t, time_split, gk_sigma=gk_sigma,
                                               plot_results=True, bipolar=bipolar, dont_calc_new_csd=True, all_meg_data=meg_data_dic,
                                               elec_data=elec_data, njobs=1)
        cluster_errors.append(max(elec_errors[cond].values())) 
開發者ID:pelednoam,項目名稱:mmvt,代碼行數:28,代碼來源:beamformers_electrodes_tweak.py

示例15: gmmRemovingOutlierForClassifier

# 需要導入模塊: from sklearn import mixture [as 別名]
# 或者: from sklearn.mixture import GMM [as 別名]
def gmmRemovingOutlierForClassifier():
    """
    use GMM model to remove outlier
    :return: NA
    """
    # load data
    X_train = np.load('inputClf_small/X_train.npy')
    y_train = np.load('inputClf_small/y_train.npy')
    y_train_price = np.load('inputClf_small/y_train_price.npy')

    # classifier initialize
    classifier = GMM(n_components=2,covariance_type='full', init_params='wmc', n_iter=20)

    # cluster initializing
    X_train1 = X_train[np.where(y_train==0)[0], :]
    X_train2 = X_train[np.where(y_train==1)[0], :]
    cluster1 = KMeans(init='random', n_clusters=1, random_state=0).fit(X_train1)
    cluster1 = cluster1.cluster_centers_
    cluster2 = KMeans(init='random', n_clusters=1, random_state=0).fit(X_train2)
    cluster2 = cluster2.cluster_centers_
    clusters = np.concatenate((cluster1, cluster2), axis=0)

    classifier.means_ = clusters

    # Train the other parameters using the EM algorithm.
    classifier.fit(X_train)

    # predict
    y_train_pred = classifier.predict(X_train)
    train_accuracy = np.mean(y_train_pred.ravel() == y_train.ravel()) * 100
    print "Keep {}% data.".format(train_accuracy)


    # keep the data which are not outliers
    y_train_pred = y_train_pred.reshape((y_train_pred.shape[0], 1))
    X_train = X_train[np.where(y_train==y_train_pred)[0], :]
    y_train_price = y_train_price[np.where(y_train==y_train_pred)[0], :]
    y_train = y_train[np.where(y_train==y_train_pred)[0], :]
    np.save('inputClf_GMMOutlierRemoval/X_train', X_train)
    np.save('inputClf_GMMOutlierRemoval/y_train', y_train)
    np.save('inputClf_GMMOutlierRemoval/y_train_price', y_train_price) 
開發者ID:junlulocky,項目名稱:AirTicketPredicting,代碼行數:43,代碼來源:ClassficationBase.py


注:本文中的sklearn.mixture.GMM屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。