當前位置: 首頁>>代碼示例>>Python>>正文


Python manifold.TSNE屬性代碼示例

本文整理匯總了Python中sklearn.manifold.TSNE屬性的典型用法代碼示例。如果您正苦於以下問題:Python manifold.TSNE屬性的具體用法?Python manifold.TSNE怎麽用?Python manifold.TSNE使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在sklearn.manifold的用法示例。


在下文中一共展示了manifold.TSNE屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plot_tsne

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import TSNE [as 別名]
def plot_tsne(self, save_eps=False):
        ''' Plot TSNE figure. Set save_eps=True if you want to save a .eps file.
        '''
        tsne = TSNE(n_components=2, init='pca', random_state=0)
        features = tsne.fit_transform(self.features)
        x_min, x_max = np.min(features, 0), np.max(features, 0)
        data = (features - x_min) / (x_max - x_min)
        del features
        for i in range(data.shape[0]):
            plt.text(data[i, 0], data[i, 1], str(self.labels[i]),
                     color=plt.cm.Set1(self.labels[i] / 10.),
                     fontdict={'weight': 'bold', 'size': 9})
        plt.xticks([])
        plt.yticks([])
        plt.title('T-SNE')
        if save_eps:
            plt.savefig('tsne.eps', dpi=600, format='eps')
        plt.show() 
開發者ID:jindongwang,項目名稱:transferlearning,代碼行數:20,代碼來源:feature_vis.py

示例2: learn_manifold

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import TSNE [as 別名]
def learn_manifold(manifold_type, feats, n_components=2):
    if manifold_type == 'tsne':
        feats_fitted = manifold.TSNE(n_components=n_components, random_state=0).fit_transform(feats)
    elif manifold_type == 'isomap':
        feats_fitted = manifold.Isomap(n_components=n_components).fit_transform(feats)
    elif manifold_type == 'mds':
        feats_fitted = manifold.MDS(n_components=n_components).fit_transform(feats)
    elif manifold_type == 'spectral':
        feats_fitted = manifold.SpectralEmbedding(n_components=n_components).fit_transform(feats)
    else:
        raise Exception('wrong maniford type!')

    # methods = ['standard', 'ltsa', 'hessian', 'modified']
    # feats_fitted = manifold.LocallyLinearEmbedding(n_components=n_components, method=methods[0]).fit_transform(pred)

    return feats_fitted 
開發者ID:CMU-CREATE-Lab,項目名稱:deep-smoke-machine,代碼行數:18,代碼來源:utils.py

示例3: plot

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import TSNE [as 別名]
def plot(self, words, num_points=None):
        if not num_points:
            num_points = len(words)

        embeddings = self.get_words_embeddings(words)
        tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
        two_d_embeddings = tsne.fit_transform(embeddings[:num_points, :])

        assert two_d_embeddings.shape[0] >= len(words), 'More labels than embeddings'
        pylab.figure(figsize=(15, 15))  # in inches
        for i, label in enumerate(words[:num_points]):
            x, y = two_d_embeddings[i, :]
            pylab.scatter(x, y)
            pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points',
                           ha='right', va='bottom')
        pylab.show() 
開發者ID:mouradmourafiq,項目名稱:philo2vec,代碼行數:18,代碼來源:models.py

示例4: visualize_embeddings

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import TSNE [as 別名]
def visualize_embeddings(self):
        
        #get most common words
        print "getting common words"
        allwords = [word for sent in self.allsents for word in sent]
        counts = collections.Counter(allwords).most_common(500)

        #reduce embeddings to 2d using tsne
        print "reducing embeddings to 2D"
        embeddings = np.empty((500,embedding_size))
        for i in range(500):
            embeddings[i,:] = model[counts[i][0]]
        tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=7500)
        embeddings = tsne.fit_transform(embeddings)

        #plot embeddings
        print "plotting most common words"
        fig, ax = plt.subplots(figsize=(30, 30))
        for i in range(500):
            ax.scatter(embeddings[i,0],embeddings[i,1])
            ax.annotate(counts[i][0], (embeddings[i,0],embeddings[i,1]))
        plt.show() 
開發者ID:iamshang1,項目名稱:Projects,代碼行數:24,代碼來源:feature_extraction_yelp.py

示例5: plot_embeddings

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import TSNE [as 別名]
def plot_embeddings(embeddings,):
    X, Y = read_node_label('../data/wiki/wiki_labels.txt')

    emb_list = []
    for k in X:
        emb_list.append(embeddings[k])
    emb_list = np.array(emb_list)

    model = TSNE(n_components=2)
    node_pos = model.fit_transform(emb_list)

    color_idx = {}
    for i in range(len(X)):
        color_idx.setdefault(Y[i][0], [])
        color_idx[Y[i][0]].append(i)

    for c, idx in color_idx.items():
        plt.scatter(node_pos[idx, 0], node_pos[idx, 1], label=c)
    plt.legend()
    plt.show() 
開發者ID:shenweichen,項目名稱:GraphEmbedding,代碼行數:22,代碼來源:node2vec_wiki.py

示例6: plot_embeddings

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import TSNE [as 別名]
def plot_embeddings(embeddings,):
    X, Y = read_node_label('../data/wiki/wiki_labels.txt')

    emb_list = []
    for k in X:
        emb_list.append(embeddings[k])
    emb_list = np.array(emb_list)

    model = TSNE(n_components=2)
    node_pos = model.fit_transform(emb_list)

    color_idx = {}
    for i in range(len(X)):
        color_idx.setdefault(Y[i][0], [])
        color_idx[Y[i][0]].append(i)

    for c, idx in color_idx.items():
        plt.scatter(node_pos[idx, 0], node_pos[idx, 1],
                    label=c)  # c=node_colors)
    plt.legend()
    plt.show() 
開發者ID:shenweichen,項目名稱:GraphEmbedding,代碼行數:23,代碼來源:sdne_wiki.py

示例7: tsne_plot

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import TSNE [as 別名]
def tsne_plot(xs, xt, xs_label, xt_label, subset=True, title=None, pname=None):

    num_test=100
    if subset:
        combined_imgs = np.vstack([xs[0:num_test, :], xt[0:num_test, :]])
        combined_labels = np.vstack([xs_label[0:num_test, :],xt_label[0:num_test, :]])
        combined_labels = combined_labels.astype('int')
            
    from sklearn.manifold import TSNE
    tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=3000)
    source_only_tsne = tsne.fit_transform(combined_imgs)
    plt.figure(figsize=(10, 10))
    plt.scatter(source_only_tsne[:num_test,0], source_only_tsne[:num_test,1],
                c=combined_labels[:num_test].argmax(1), s=75, marker='o', alpha=0.5, label='source train data')
    plt.scatter(source_only_tsne[num_test:,0], source_only_tsne[num_test:,1], 
                c=combined_labels[num_test:].argmax(1),s=50,marker='x',alpha=0.5,label='target train data')
    plt.legend(loc='best')
    plt.title(title)

#%% TSNE plots of source model and target model 
開發者ID:bbdamodaran,項目名稱:deepJDOT,代碼行數:22,代碼來源:deepjdot_demo.py

示例8: tsne_plot

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import TSNE [as 別名]
def tsne_plot(xs, xt, xs_label, xt_label, map_xs=None, title=None, pname=None):

    num_test=1000
    if map_xs is not None:
        combined_imgs = np.vstack([xs[0:num_test, :], xt[0:num_test, :], map_xs[0:num_test,:]])
        combined_labels = np.vstack([xs_label[0:num_test, :],xt_label[0:num_test, :], xs_label[0:num_test,:]])
        combined_labels = combined_labels.astype('int')
        combined_domain = np.vstack([np.zeros((num_test,1)),np.ones((num_test,1)),np.ones((num_test,1))*2])

    from sklearn.manifold import TSNE

    tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=3000)
    source_only_tsne = tsne.fit_transform(combined_imgs)


    plot_embedding(source_only_tsne, combined_labels.argmax(1), combined_domain,
                   title, save_fig=1, pname=pname) 
開發者ID:bbdamodaran,項目名稱:deepJDOT,代碼行數:19,代碼來源:utlis.py

示例9: tsne

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import TSNE [as 別名]
def tsne(features, n_components=2):
    """
    Returns the embedded points for TSNE.
    Parameters
    ----------
    features: numpy.ndarray
        contains the input feature vectors.
    n_components: int
        number of components to transform the features into

    Returns
    -------
    embedding: numpy.ndarray
        x,y(z) points that the feature vectors have been transformed into
    """
    embedding = TSNE(n_components=n_components).fit_transform(features)
    return embedding 
開發者ID:DIVA-DIA,項目名稱:DeepDIVA,代碼行數:19,代碼來源:embedding.py

示例10: get_classer

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import TSNE [as 別名]
def get_classer(self, algo_name, classer, algo_dir):
        if not os.path.exists(algo_dir):
            os.mkdir(algo_dir)
        classer_fn = '{}_classer.npy'.format(os.path.join(algo_dir, algo_name))
        trafoed_fn = '{}_trafoed.npy'.format(os.path.join(algo_dir, algo_name))
        if os.path.isfile(classer_fn):
            return pickle.load(open(classer_fn, mode='rb'))
        else:
            if algo_name == 'DBSCAN':
                self.loop_estimate_bandwidth()
            logger.info('clustering all speech with {}'.format(algo_name))
            if hasattr(classer, 'fit') and hasattr(classer, 'predict'):
                classer.fit(self.sdc_all_speech)
            elif hasattr(classer, 'fit_transform'): # TSNE
                all_speech_trafoed = classer.fit_transform(self.sdc_all_speech)
                np.save(open(trafoed_fn, mode='wb'), all_speech_trafoed)
            else: # DBSCAN
                classer.fit_predict(self.sdc_all_speech)
            logger.info(classer.get_params())
            logger.info('dumping classifier')
            pickle.dump(classer, open(classer_fn, mode='wb'))
            return classer 
開發者ID:hlt-bme-hu,項目名稱:hunspeech,代碼行數:24,代碼來源:shifted_delta_cepstra.py

示例11: cal_tsne_embeds

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import TSNE [as 別名]
def cal_tsne_embeds(X, y, n_components=2, text=None, save_path=None):
    """
    Plot using tSNE
    :param X: embedding
    :param y: label
    :param n_components: number of components
    :param text: text for plot
    :param save_path: save path
    :return:
    """
    X = X[: 500]
    y = y[: 500]

    tsne = manifold.TSNE(n_components=n_components)
    X_tsne = tsne.fit_transform(X, y)

    plot_2d_embeds(X_tsne, y, text, save_path) 
開發者ID:aws-samples,項目名稱:d-SNE,代碼行數:19,代碼來源:plotting.py

示例12: cal_tsne_embeds_src_tgt

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import TSNE [as 別名]
def cal_tsne_embeds_src_tgt(Xs, ys, Xt, yt, n_components=2, text=None, save_path=None, n_samples=1000, names=None):
    """
    Plot embedding for both source and target domain using tSNE
    :param Xs:
    :param ys:
    :param Xt:
    :param yt:
    :param n_components:
    :param text:
    :param save_path:
    :return:
    """
    Xs = Xs[: min(len(Xs), n_samples)]
    ys = ys[: min(len(ys), n_samples)]
    Xt = Xt[: min(len(Xt), n_samples)]
    yt = yt[: min(len(Xt), n_samples)]
    
    X = np.concatenate((Xs, Xt), axis=0)
    tsne = manifold.TSNE(n_components=n_components)
    X = tsne.fit_transform(X)
    Xs = X[: len(Xs)]
    Xt = X[len(Xs):]

    plot_embedding_src_tgt(Xs, ys, Xt, yt, text, save_path, names=names) 
開發者ID:aws-samples,項目名稱:d-SNE,代碼行數:26,代碼來源:plotting.py

示例13: main

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import TSNE [as 別名]
def main():
    args = parse_args()
    X, labels = np.loadtxt(args.embeddings_path), np.loadtxt(args.labels_path, dtype=np.str)
    tsne = TSNE(n_components=2, n_iter=10000, perplexity=5, init='pca', learning_rate=200, verbose=1)
    transformed = tsne.fit_transform(X)

    y = set(labels)
    labels = np.array(labels)
    plt.figure(figsize=(20, 14))
    colors = cm.rainbow(np.linspace(0, 1, len(y)))
    for label, color in zip(y, colors):
        points = transformed[labels == label, :]
        plt.scatter(points[:, 0], points[:, 1], c=[color], label=label, s=200, alpha=0.5)
        for p1, p2 in random.sample(list(zip(points[:, 0], points[:, 1])), k=min(1, len(points))):
            plt.annotate(label, (p1, p2), fontsize=30)

    plt.savefig('tsne_visualization.png', transparent=True, bbox_inches='tight', pad_inches=0)
    plt.show() 
開發者ID:arsfutura,項目名稱:face-recognition,代碼行數:20,代碼來源:tsne_visualization.py

示例14: plot

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import TSNE [as 別名]
def plot(args):
    wc = pickle.load(open(os.path.join(args.data_dir, 'wc.dat'), 'rb'))
    words = sorted(wc, key=wc.get, reverse=True)[:args.top_k]
    if args.model == 'pca':
        model = PCA(n_components=2)
    elif args.model == 'tsne':
        model = TSNE(n_components=2, perplexity=30, init='pca', method='exact', n_iter=5000)
    word2idx = pickle.load(open('data/word2idx.dat', 'rb'))
    idx2vec = pickle.load(open('data/idx2vec.dat', 'rb'))
    X = [idx2vec[word2idx[word]] for word in words]
    X = model.fit_transform(X)
    plt.figure(figsize=(18, 18))
    for i in range(len(X)):
        plt.text(X[i, 0], X[i, 1], words[i], bbox=dict(facecolor='blue', alpha=0.1))
    plt.xlim((np.min(X[:, 0]), np.max(X[:, 0])))
    plt.ylim((np.min(X[:, 1]), np.max(X[:, 1])))
    if not os.path.isdir(args.result_dir):
        os.mkdir(args.result_dir)
    plt.savefig(os.path.join(args.result_dir, args.model) + '.png') 
開發者ID:theeluwin,項目名稱:pytorch-sgns,代碼行數:21,代碼來源:plot.py

示例15: plot_embedding

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import TSNE [as 別名]
def plot_embedding(embedding, annotation=None, filename='outputs/embedding.png'):
    reduced = TSNE(n_components=2).fit_transform(embedding)
    plt.figure(figsize=(20, 20))
    max_x = np.amax(reduced, axis=0)[0]
    max_y = np.amax(reduced, axis=0)[1]
    plt.xlim((-max_x, max_x))
    plt.ylim((-max_y, max_y))

    plt.scatter(reduced[:, 0], reduced[:, 1], s=20, c=["r"] + ["b"] * (len(reduced) - 1))

    # Annotation
    if annotation:
        for i in range(embedding.shape[0]):
            target = annotation[i]
            x = reduced[i, 0]
            y = reduced[i, 1]
            plt.annotate(target, (x, y))

    plt.savefig(filename)
    # plt.show() 
開發者ID:andabi,項目名稱:voice-vector,代碼行數:22,代碼來源:embedding.py


注:本文中的sklearn.manifold.TSNE屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。