當前位置: 首頁>>代碼示例>>Python>>正文


Python manifold.MDS屬性代碼示例

本文整理匯總了Python中sklearn.manifold.MDS屬性的典型用法代碼示例。如果您正苦於以下問題:Python manifold.MDS屬性的具體用法?Python manifold.MDS怎麽用?Python manifold.MDS使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在sklearn.manifold的用法示例。


在下文中一共展示了manifold.MDS屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: learn_manifold

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import MDS [as 別名]
def learn_manifold(manifold_type, feats, n_components=2):
    if manifold_type == 'tsne':
        feats_fitted = manifold.TSNE(n_components=n_components, random_state=0).fit_transform(feats)
    elif manifold_type == 'isomap':
        feats_fitted = manifold.Isomap(n_components=n_components).fit_transform(feats)
    elif manifold_type == 'mds':
        feats_fitted = manifold.MDS(n_components=n_components).fit_transform(feats)
    elif manifold_type == 'spectral':
        feats_fitted = manifold.SpectralEmbedding(n_components=n_components).fit_transform(feats)
    else:
        raise Exception('wrong maniford type!')

    # methods = ['standard', 'ltsa', 'hessian', 'modified']
    # feats_fitted = manifold.LocallyLinearEmbedding(n_components=n_components, method=methods[0]).fit_transform(pred)

    return feats_fitted 
開發者ID:CMU-CREATE-Lab,項目名稱:deep-smoke-machine,代碼行數:18,代碼來源:utils.py

示例2: mds

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import MDS [as 別名]
def mds(features, n_components=2):
    """
    Returns the embedded points for MDS.
    Parameters
    ----------
    features: numpy.ndarray
        contains the input feature vectors.
    n_components: int
        number of components to transform the features into

    Returns
    -------
    embedding: numpy.ndarray
        x,y(z) points that the feature vectors have been transformed into
    """
    embedding = MDS(n_components=n_components, n_jobs=-1).fit_transform(features)
    return embedding 
開發者ID:DIVA-DIA,項目名稱:DeepDIVA,代碼行數:19,代碼來源:embedding.py

示例3: apply_lens

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import MDS [as 別名]
def apply_lens(df, lens='pca', dist='euclidean', n_dim=2, **kwargs):
    """
    input: N x F dataframe of observations
    output: N x n_dim image of input data under lens function
    """
    if n_dim != 2:
        raise 'error: image of data set must be two-dimensional'
    if dist not in ['euclidean', 'correlation']:
        raise 'error: only euclidean and correlation distance metrics are supported'
    if lens == 'pca' and dist != 'euclidean':
        raise 'error: PCA requires the use of euclidean distance metric'

    if lens == 'pca':
        df_lens = pd.DataFrame(decomposition.PCA(n_components=n_dim, **kwargs).fit_transform(df), df.index)
    elif lens == 'mds':
        D = metrics.pairwise.pairwise_distances(df, metric=dist)
        df_lens = pd.DataFrame(manifold.MDS(n_components=n_dim, **kwargs).fit_transform(D), df.index)
    elif lens == 'neighbor':
        D = metrics.pairwise.pairwise_distances(df, metric=dist)
        df_lens = pd.DataFrame(manifold.SpectralEmbedding(n_components=n_dim, **kwargs).fit_transform(D), df.index)
    else:
        raise 'error: only PCA, MDS, neighborhood lenses are supported'
    
    return df_lens 
開發者ID:szairis,項目名稱:sakmapper,代碼行數:26,代碼來源:lens.py

示例4: get_scaled_vectors

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import MDS [as 別名]
def get_scaled_vectors(vectors, user_seed=None, n_components=12, normalize=True, progress=progress):
    if user_seed:
        seed = np.random.RandomState(seed=user_seed)
    else:
        seed = np.random.RandomState()

    # FIXME: Make this optional:
    from sklearn.metrics.pairwise import euclidean_distances as d

    vectors = get_normalized_vectors(np.array(vectors)) if normalize else np.array(vectors)

    # compute similarities based on d
    progress.update('Computing similarity matrix')
    similarities = d(vectors)

    progress.update('Scaling using %d components' % n_components)
    mds = manifold.MDS(n_components=n_components, max_iter=300, eps=1e-10, random_state=seed,
                       dissimilarity="precomputed", n_jobs=1)

    progress.update('Fitting')
    scaled_vectors = mds.fit(similarities).embedding_

    return scaled_vectors 
開發者ID:merenlab,項目名稱:anvio,代碼行數:25,代碼來源:clustering.py

示例5: compute_theta_all

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import MDS [as 別名]
def compute_theta_all(D, vertices, faces, normals, idx, radius):
    mymds = MDS(n_components=2, n_init=1, max_iter=50, dissimilarity='precomputed', n_jobs=10)
    all_theta = []
    for i in range(D.shape[0]):
        if i % 100 == 0:
            print(i)
        # Get the pairs of geodesic distances.
        neigh = D[i].nonzero()
        ii = np.where(D[i][neigh] < radius)[1]
        neigh_i = neigh[1][ii]
        pair_dist_i = D[neigh_i,:][:,neigh_i]
        pair_dist_i = pair_dist_i.todense()

        # Plane_i: the 2D plane for all neighbors of i
        plane_i = call_mds(mymds, pair_dist_i)
    
        # Compute the angles on the plane.
        theta = compute_thetas(plane_i, i, vertices, faces, normals, neigh_i, idx)
        all_theta.append(theta)
    return all_theta 
開發者ID:LPDI-EPFL,項目名稱:masif,代碼行數:22,代碼來源:compute_polar_coordinates.py

示例6: mds

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import MDS [as 別名]
def mds(utv):
    rdm = scipy.spatial.distance.squareform(utv)
    seed = numpy.random.RandomState(seed=3)
    mds = MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed,
                   dissimilarity="precomputed", n_jobs=1)
    pos = mds.fit_transform(rdm)

    # rescale
    #pos *= sqrt((X_true ** 2).sum()) / sqrt((pos ** 2).sum())


   # Y = mds.fit_transform(RDM)
#    if itime == 0:
#        Y = mds.fit_transform(RDM)
#    else:
#        d, Y, _ = procrustes(
#            Y, mds.fit_transform(RDM), scaling=False)

    # Rotate the data
    # clf = PCA(n_components=2)
    # pos = clf.fit_transform(pos)
    return pos 
開發者ID:Charestlab,項目名稱:pyrsa,代碼行數:24,代碼來源:mds.py

示例7: plot_cluster

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import MDS [as 別名]
def plot_cluster(cluster):
	'''
	Plot scatter diagram for final points that using multi-dimensional scaling for data

	Args:
		cluster : DensityPeakCluster object
	'''
	logger.info("PLOT: cluster result, start multi-dimensional scaling")
	dp = np.zeros((cluster.max_id, cluster.max_id), dtype = np.float32)
	cls = []
	for i in xrange(1, cluster.max_id):
		for j in xrange(i + 1, cluster.max_id + 1):
			dp[i - 1, j - 1] = cluster.distances[(i, j)]
			dp[j - 1, i - 1] = cluster.distances[(i, j)]
		cls.append(cluster.cluster[i])
	cls.append(cluster.cluster[cluster.max_id])
	cls = np.array(cls, dtype = np.float32)
	fo = open(r'./tmp.txt', 'w')
	fo.write('\n'.join(map(str, cls)))
	fo.close()
	#seed = np.random.RandomState(seed=3)
	mds = manifold.MDS(max_iter=200, eps=1e-4, n_init=1,dissimilarity='precomputed')
	dp_mds = mds.fit_transform(dp.astype(np.float64))
	logger.info("PLOT: end mds, start plot")
	plot_scatter_diagram(1, dp_mds[:, 0], dp_mds[:, 1], title='2D Nonclassical Multidimensional Scaling', style_list = cls)
	plt.savefig("2D Nonclassical Multidimensional Scaling.jpg") 
開發者ID:lanbing510,項目名稱:DensityPeakCluster,代碼行數:28,代碼來源:plot.py

示例8: plot_demo_1

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import MDS [as 別名]
def plot_demo_1():
    X = np.c_[np.ones(5), 2 * np.ones(5), 10 * np.ones(5)].T
    y = np.array([0, 1, 2])

    fig = pylab.figure(figsize=(10, 4))

    ax = fig.add_subplot(121, projection='3d')
    ax.set_axis_bgcolor('white')

    mds = manifold.MDS(n_components=3)
    Xtrans = mds.fit_transform(X)

    for cl, color, marker in zip(np.unique(y), colors, markers):
        ax.scatter(
            Xtrans[y == cl][:, 0], Xtrans[y == cl][:, 1], Xtrans[y == cl][:, 2], c=color, marker=marker, edgecolor='black')
    pylab.title("MDS on example data set in 3 dimensions")
    ax.view_init(10, -15)

    mds = manifold.MDS(n_components=2)
    Xtrans = mds.fit_transform(X)

    ax = fig.add_subplot(122)
    for cl, color, marker in zip(np.unique(y), colors, markers):
        ax.scatter(
            Xtrans[y == cl][:, 0], Xtrans[y == cl][:, 1], c=color, marker=marker, edgecolor='black')
    pylab.title("MDS on example data set in 2 dimensions")

    filename = "mds_demo_1.png"
    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") 
開發者ID:PacktPublishing,項目名稱:Building-Machine-Learning-Systems-With-Python-Second-Edition,代碼行數:31,代碼來源:demo_mds.py

示例9: do_mds

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import MDS [as 別名]
def do_mds(X):
    """Do MDS"""

    from sklearn import manifold
    seed = np.random.RandomState(seed=3)
    mds = manifold.MDS(n_components=3, max_iter=3000, eps=1e-9, random_state=seed,
                        n_jobs=1)
    pX = mds.fit(X.values).embedding_
    pX = pd.DataFrame(pX,index=X.index)
    return pX 
開發者ID:dmnfarrell,項目名稱:smallrnaseq,代碼行數:12,代碼來源:analysis.py

示例10: plot_cluster

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import MDS [as 別名]
def plot_cluster(cluster):
    '''
    Plot scatter diagram for final points that using multi-dimensional scaling for data

    Args:
            cluster : DensityPeakCluster object
    '''
    logger.info("PLOT: cluster result, start multi-dimensional scaling")
    dp = np.zeros((cluster.max_id, cluster.max_id), dtype=np.float32)
    cls = []
    for i in xrange(1, cluster.max_id):
        for j in xrange(i + 1, cluster.max_id + 1):
            dp[i - 1, j - 1] = cluster.distances[(i, j)]
            dp[j - 1, i - 1] = cluster.distances[(i, j)]
        cls.append(cluster.cluster[i])
    cls.append(cluster.cluster[cluster.max_id])
    cls = np.array(cls, dtype=np.float32)
    fo = open(r'./tmp.txt', 'w')
    fo.write('\n'.join(map(str, cls)))
    fo.close()
    version = versiontuple(sklearn_version)[1] > 14
    if version[0] > 0 or version[1] > 14:
        mds = manifold.MDS(max_iter=200, eps=1e-4, n_init=1,
                           dissimilarity='precomputed')
    else:
        mds = manifold.MDS(max_iter=200, eps=1e-4, n_init=1)
    dp_mds = mds.fit_transform(dp)
    logger.info("PLOT: end mds, start plot")
    plot_scatter_diagram(1, dp_mds[:, 0], dp_mds[
                         :, 1], title='cluster', style_list=cls) 
開發者ID:jasonwbw,項目名稱:DensityPeakCluster,代碼行數:32,代碼來源:plot.py

示例11: generate_missing_coordinates

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import MDS [as 別名]
def generate_missing_coordinates(for_D):
    from sklearn import manifold
    mds = manifold.MDS(n_components=2, dissimilarity='precomputed',
                       random_state=42)
    mds_results = mds.fit(for_D)
    points = list( mds_results.embedding_ )
    edge_weight_type = "EUC_2D" if _is_all_integer_array(for_D) else "EXACT_2D"
    return points, edge_weight_type 
開發者ID:yorak,項目名稱:VeRyPy,代碼行數:10,代碼來源:cvrp_ops.py

示例12: fill_missing_pts_as_needed

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import MDS [as 別名]
def fill_missing_pts_as_needed(points, D):
    #print(points, dd_points)
    if points is None:
        # We do not have point coodrinates, but we have D!
        from sklearn import manifold
        mds = manifold.MDS(n_components=2, dissimilarity='precomputed',
                           random_state=42)
        mds_results = mds.fit(D)
        return list( mds_results.embedding_ )
    return points 
開發者ID:yorak,項目名稱:VeRyPy,代碼行數:12,代碼來源:test_wren_holliday_sweep.py

示例13: generate_qc_plot

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import MDS [as 別名]
def generate_qc_plot(method, input_files, outdir, n_cpu, ref_db=None):

    # plot MDS
    if method in ["mds", "all"]:
        dist_mat, file_names = get_mash_dist(input_gffs=input_files,
                                             outdir=outdir,
                                             n_cpu=n_cpu,
                                             quiet=True)
        plot_MDS(dist_mat, file_names, outdir)

    # plot number of genes
    if method in ["ngenes", "all"]:
        plot_ngenes(input_gffs=input_files, outdir=outdir)

    # plot number of contigs
    if method in ["ncontigs", "all"]:
        plot_ncontigs(input_gffs=input_files, outdir=outdir)

    # plot contamination scatter plot
    if (method in ["contam", "all"]):
        if ref_db is None:
            print(
                "No reference mash database given! Skipping contamination plot..."
            )
            print(("One can be downloaded from https://mash.readthedocs.io" +
                   "/en/latest/tutorials.html#screening-a-read-set-for" +
                   "-containment-of-refseq-genomes"))
        else:
            mash_contam_file = get_mash_contam(input_gffs=input_files,
                                               mash_ref=ref_db,
                                               n_cpu=n_cpu,
                                               outdir=outdir)
            plot_mash_contam(mash_contam_file=mash_contam_file, outdir=outdir)

    return 
開發者ID:gtonkinhill,項目名稱:panaroo,代碼行數:37,代碼來源:generate_qc_plots.py

示例14: __init__

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import MDS [as 別名]
def __init__(self, options):
        self.handle_options(options)
        out_params = convert_params(
            options.get('params', {}),
            ints=['k', 'max_iter', 'n_init', 'n_jobs'],
            floats=['eps'],
            bools=['metric'],
            aliases={'k': 'n_components'}
        )

        if 'max_iter' not in out_params:
            out_params.setdefault('max_iter', 300)

        if 'n_init' not in out_params:
            out_params.setdefault('n_init', 4)

        if 'n_jobs' not in out_params:
            out_params.setdefault('n_jobs', 1)

        if 'eps' not in out_params:
            out_params.setdefault('eps', 0.001)

        if 'metric' not in out_params:
            out_params.setdefault('metric', True)

        self.estimator = _MDS(**out_params) 
開發者ID:splunk,項目名稱:mltk-algo-contrib,代碼行數:28,代碼來源:MDS.py

示例15: sklearn_mds

# 需要導入模塊: from sklearn import manifold [as 別名]
# 或者: from sklearn.manifold import MDS [as 別名]
def sklearn_mds(n_com=2):
    mds = MDS(n_components=n_com)
    data = load_digits().data
    target = load_digits().target
    data_2d = mds.fit_transform(data)
    plt.scatter(data_2d[:, 0], data_2d[:, 1], c = target)
    plt.show() 
開發者ID:heucoder,項目名稱:dimensionality_reduction_alo_codes,代碼行數:9,代碼來源:MDS_tensorflow.py


注:本文中的sklearn.manifold.MDS屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。