當前位置: 首頁>>代碼示例>>Python>>正文


Python decomposition.PCA屬性代碼示例

本文整理匯總了Python中sklearn.decomposition.PCA屬性的典型用法代碼示例。如果您正苦於以下問題:Python decomposition.PCA屬性的具體用法?Python decomposition.PCA怎麽用?Python decomposition.PCA使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在sklearn.decomposition的用法示例。


在下文中一共展示了decomposition.PCA屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: PCA

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import PCA [as 別名]
def PCA(data, num_components=None):
    # mean center the data
    data -= data.mean(axis=0)
    # calculate the covariance matrix
    R = np.cov(data, rowvar=False)
    # calculate eigenvectors & eigenvalues of the covariance matrix
    # use 'eigh' rather than 'eig' since R is symmetric,
    # the performance gain is substantial
    V, E = np.linalg.eigh(R)
    # sort eigenvalue in decreasing order
    idx = np.argsort(V)[::-1]
    E = E[:,idx]
    # sort eigenvectors according to same index
    V = V[idx]
    # select the first n eigenvectors (n is desired dimension
    # of rescaled data array, or dims_rescaled_data)
    E = E[:, :num_components]
    # carry out the transformation on the data using eigenvectors
    # and return the re-scaled data, eigenvalues, and eigenvectors
    return np.dot(E.T, data.T).T, V, E 
開發者ID:njanakiev,項目名稱:blender-scripting,代碼行數:22,代碼來源:fisher_iris_visualization.py

示例2: fit

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import PCA [as 別名]
def fit(self, x):
        """ Compute PCA.

        Parameters
        ----------
        x : ndarray, shape(n_samples, n_feat)
            Input matrix.

        Returns
        -------
        self : object
            Returns self.

        """

        pca = PCA(n_components=self.n_components,
                  random_state=self.random_state)
        self.maps_ = pca.fit_transform(x)
        self.lambdas_ = pca.explained_variance_

        return self 
開發者ID:MICA-MNI,項目名稱:BrainSpace,代碼行數:23,代碼來源:embedding.py

示例3: gen_instance

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import PCA [as 別名]
def gen_instance(self, max_length, dimension, test_mode=True, seed=0):
        if seed!=0: np.random.seed(seed)

        # Randomly generate (max_length) cities with (dimension) coordinates in [0,100]
        seq = np.random.randint(100, size=(max_length, dimension))

        # Principal Component Analysis to center & rotate coordinates
        pca = PCA(n_components=dimension)
        sequence = pca.fit_transform(seq)

        # Scale to [0,1[
        input_ = sequence/100

        if test_mode == True:
            return input_, seq
        else:
            return input_

    # Generate random batch for training procedure 
開發者ID:MichelDeudon,項目名稱:neural-combinatorial-optimization-rl-tensorflow,代碼行數:21,代碼來源:dataset.py

示例4: getGFKDim

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import PCA [as 別名]
def getGFKDim(Xs, Xt):
    Pss = PCA().fit(Xs).components_.T
    Pts = PCA().fit(Xt).components_.T
    Psstt = PCA().fit(np.vstack((Xs, Xt))).components_.T
    
    DIM = round(Xs.shape[1]*0.5)
    res = -1
    
    for d in range(1, DIM+1):
        Ps = Pss[:, :d]
        Pt = Pts[:, :d]
        Pst = Psstt[:, :d]
        alpha1 = getAngle(Ps, Pst, d)
        alpha2 = getAngle(Pt, Pst, d)
        D = (alpha1 + alpha2) * 0.5
        check = [round(D[1, dd]*100) == 100 for dd in range(d)]
        if True in check:
            res = list(map(lambda i: i == True, check)).index(True) 
            return res 
開發者ID:jindongwang,項目名稱:transferlearning,代碼行數:21,代碼來源:intra_alignment.py

示例5: get_rot_rad

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import PCA [as 別名]
def get_rot_rad(init_coorx, coory, z=50, coorW=1024, coorH=512, floorW=1024, floorH=512, tol=5):
    gpid = get_gpid(init_coorx, coorW)
    coor = np.hstack([np.arange(coorW)[:, None], coory[:, None]])
    xy = np_coor2xy(coor, z, coorW, coorH, floorW, floorH)
    xy_cor = []

    rot_rad_suggestions = []
    for j in range(len(init_coorx)):
        pca = PCA(n_components=1)
        pca.fit(xy[gpid == j])
        rot_rad_suggestions.append(_get_rot_rad(*pca.components_[0]))
    rot_rad_suggestions = np.sort(rot_rad_suggestions + [1e9])

    rot_rad = np.mean(rot_rad_suggestions[:-1])
    best_rot_rad_sz = -1
    last_j = 0
    for j in range(1, len(rot_rad_suggestions)):
        if rot_rad_suggestions[j] - rot_rad_suggestions[j-1] > tol:
            last_j = j
        elif j - last_j > best_rot_rad_sz:
            rot_rad = rot_rad_suggestions[last_j:j+1].mean()
            best_rot_rad_sz = j - last_j

    dx = int(round(rot_rad * 1024 / 360))
    return dx, rot_rad 
開發者ID:sunset1995,項目名稱:HorizonNet,代碼行數:27,代碼來源:post_proc.py

示例6: pca

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import PCA [as 別名]
def pca(self, **kwargs):
        if 'n_components' in kwargs:
            nComp = kwargs['n_components']
        else:
            nComp = 0.995

        if 'dates' in kwargs:
            mat = self.to_matrix(kwargs['dates'])
        else:
            mat = self.to_matrix()
        scaler = StandardScaler()
        pca = PCA(n_components=nComp)
        self._pipeline = Pipeline([('scaler', scaler), ('pca', pca)])
        self._pipeline.fit(mat)
        
        if 'file' in kwargs:
            tofile(kwargs['file'], self._pipeline)
        
        return self._pipeline 
開發者ID:Andres-Hernandez,項目名稱:CalibrationNN,代碼行數:21,代碼來源:data_utils.py

示例7: __init__

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import PCA [as 別名]
def __init__(self,
                 weighter=LengthNormalizer(),
                 normalizer=StandardScaler(),
                 selector=AssociationCompactor(1000, RankDifference),
                 projector=PCA(2)):
        '''

        :param weighter: instance of an sklearn class with fit_transform to weight X category corpus.
        :param normalizer: instance of an sklearn class with fit_transform to normalize term X category corpus.
        :param selector: instance of a compactor class, if None, no compaction will be done.
        :param projector: instance an sklearn class with fit_transform
        '''
        self.weighter_ = weighter
        self.normalizer_ = normalizer
        self.selector_ = selector
        self.projector_ = projector 
開發者ID:JasonKessler,項目名稱:scattertext,代碼行數:18,代碼來源:CategoryProjector.py

示例8: parse_args

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import PCA [as 別名]
def parse_args():
    """ Parse input arguments """
    parser = argparse.ArgumentParser(description='Feature extraction for RCC algorithm')

    parser.add_argument('--dataset', default=None, type=str,
                        help='The entered dataset file must be in the Data folder')
    parser.add_argument('--prep', dest='prep', default='none', type=str,
                        help='preprocessing of data: scale,minmax,normalization,none')
    parser.add_argument('--algo', dest='algo', default='mknn', type=str,
                        help='Algorithm to use: knn,mknn')
    parser.add_argument('--k', dest='k', default=10, type=int,
                        help='Number of nearest neighbor to consider')
    parser.add_argument('--pca', dest='pca', default=None, type=int,
                        help='Dimension of PCA processing before kNN graph construction')
    parser.add_argument('--samples', dest='nsamples', default=0, type=int,
                        help='total samples to consider')
    parser.add_argument('--format', choices=['mat', 'pkl', 'h5'], default='mat', help='Dataset format')

    args = parser.parse_args()
    return args 
開發者ID:shahsohil,項目名稱:DCC,代碼行數:22,代碼來源:edgeConstruction.py

示例9: pca

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import PCA [as 別名]
def pca(features, n_components=2):
    """
    Returns the embedded points for PCA.
    Parameters
    ----------
    features: numpy.ndarray
        contains the input feature vectors.
    n_components: int
        number of components to transform the features into

    Returns
    -------
    embedding: numpy.ndarray
        x,y(z) points that the feature vectors have been transformed into
    """
    embedding = PCA(n_components=n_components).fit_transform(features)
    return embedding

######################################################################################################################## 
開發者ID:DIVA-DIA,項目名稱:DeepDIVA,代碼行數:21,代碼來源:embedding.py

示例10: create_writer

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import PCA [as 別名]
def create_writer(self,
                      image_out_port: None) -> PcaTaskWriter:
        """
        Method to create an instance of PcaTaskWriter.

        Parameters
        ----------
        image_out_port : None
            Output port, not used.

        Returns
        -------
        pynpoint.util.multipca.PcaTaskWriter
            PCA task writer.
        """

        return PcaTaskWriter(self.m_result_queue,
                             self.m_mean_out_port,
                             self.m_median_out_port,
                             self.m_weighted_out_port,
                             self.m_clip_out_port,
                             self.m_data_mutex,
                             self.m_requirements) 
開發者ID:PynPoint,項目名稱:PynPoint,代碼行數:25,代碼來源:multipca.py

示例11: init_creator

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import PCA [as 別名]
def init_creator(self,
                     image_in_port: None) -> PcaTaskCreator:
        """
        Method to create an instance of PcaTaskCreator.

        Parameters
        ----------
        image_in_port : None
            Input port, not used.

        Returns
        -------
        pynpoint.util.multipca.PcaTaskCreator
            PCA task creator.
        """

        return PcaTaskCreator(self.m_tasks_queue,
                              self.m_num_proc,
                              self.m_pca_numbers) 
開發者ID:PynPoint,項目名稱:PynPoint,代碼行數:21,代碼來源:multipca.py

示例12: vis

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import PCA [as 別名]
def vis(embed, vis_alg='PCA', pool_alg='REDUCE_MEAN'):
    plt.close()
    fig = plt.figure()
    plt.rcParams['figure.figsize'] = [21, 7]
    for idx, ebd in enumerate(embed):
        ax = plt.subplot(2, 6, idx + 1)
        vis_x = ebd[:, 0]
        vis_y = ebd[:, 1]
        plt.scatter(vis_x, vis_y, c=subset_label, cmap=ListedColormap(["blue", "green", "yellow", "red"]), marker='.',
                    alpha=0.7, s=2)
        ax.set_title('pool_layer=-%d' % (idx + 1))
    plt.tight_layout()
    plt.subplots_adjust(bottom=0.1, right=0.95, top=0.9)
    cax = plt.axes([0.96, 0.1, 0.01, 0.3])
    cbar = plt.colorbar(cax=cax, ticks=range(num_label))
    cbar.ax.get_yaxis().set_ticks([])
    for j, lab in enumerate(['ent.', 'bus.', 'sci.', 'heal.']):
        cbar.ax.text(.5, (2 * j + 1) / 8.0, lab, ha='center', va='center', rotation=270)
    fig.suptitle('%s visualization of BERT layers using "bert-as-service" (-pool_strategy=%s)' % (vis_alg, pool_alg),
                 fontsize=14)
    plt.show() 
開發者ID:hanxiao,項目名稱:bert-as-service,代碼行數:23,代碼來源:example7.py

示例13: load_wemb

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import PCA [as 別名]
def load_wemb(params, vocab):
    wemb = pkl.load(open(prm.wordemb_path, 'rb'))
    dim_emb_orig = wemb.values()[0].shape[0]

    W = 0.01 * np.random.randn(prm.n_words, dim_emb_orig).astype(config.floatX)
    for word, pos in vocab.items():
        if word in wemb:
            W[pos,:] = wemb[word]
    
    if prm.dim_emb < dim_emb_orig:
        pca =PCA(n_components=prm.dim_emb, copy=False, whiten=True)
        W = pca.fit_transform(W)

    params['W'] = W

    return params 
開發者ID:nyu-dl,項目名稱:dl4ir-webnav,代碼行數:18,代碼來源:neuagent.py

示例14: Transform

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import PCA [as 別名]
def Transform(self, data_container, store_folder='', store_key=''):
        data = data_container.GetArray()
        if data.shape[1] != self.GetModel().components_.shape[1]:
            print('Data can not be transformed by existed PCA')
        sub_data = self.GetModel().transform(data)

        sub_feature_name = ['PCA_feature_' + str(index) for index in
                            range(1, super(DimensionReductionByPCA, self).GetRemainedNumber() + 1)]

        new_data_container = deepcopy(data_container)
        new_data_container.SetArray(sub_data)
        new_data_container.SetFeatureName(sub_feature_name)
        new_data_container.UpdateFrameByData()

        if store_folder:
            self.SaveDataContainer(data_container, store_folder, store_key)

        return new_data_container 
開發者ID:salan668,項目名稱:FAE,代碼行數:20,代碼來源:DimensionReduction.py

示例15: __init__

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import PCA [as 別名]
def __init__(
        self,
        features: ndarray,
        algorithm: str = 'kmeans',
        pca_k: int = None,
        random_state: int = 12345
    ):
        """
        :param features: the embedding matrix created by bert parent
        :param algorithm: Which clustering algorithm to use
        :param pca_k: If you want the features to be ran through pca, this is the components number
        :param random_state: Random state
        """

        if pca_k:
            self.features = PCA(n_components=pca_k).fit_transform(features)
        else:
            self.features = features

        self.algorithm = algorithm
        self.pca_k = pca_k
        self.random_state = random_state 
開發者ID:dmmiller612,項目名稱:bert-extractive-summarizer,代碼行數:24,代碼來源:cluster_features.py


注:本文中的sklearn.decomposition.PCA屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。