當前位置: 首頁>>代碼示例>>Python>>正文


Python decomposition.NMF屬性代碼示例

本文整理匯總了Python中sklearn.decomposition.NMF屬性的典型用法代碼示例。如果您正苦於以下問題:Python decomposition.NMF屬性的具體用法?Python decomposition.NMF怎麽用?Python decomposition.NMF使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在sklearn.decomposition的用法示例。


在下文中一共展示了decomposition.NMF屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: write_topics

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import NMF [as 別名]
def write_topics(ftopics, fwords, ftopics_words, poem_words, n_topic, n_topic_words):
    count_matrix = count_vect.fit_transform(poem_words)
    tfidf = TfidfTransformer().fit_transform(count_matrix)
    nmf = decomposition.NMF(n_components=n_topic).fit(tfidf)
    feature_names = count_vect.get_feature_names()
    fw = codecs.open(ftopics, 'w', 'utf-8')
    for topic in nmf.components_:
        fw.write(' '.join([feature_names[i] for i in topic.argsort()[:-n_topic_words - 1:-1]]) + '\n')
    fw.close()
    print('Write topics done.')
    fw = codecs.open(fwords, 'wb')
    pickle.dump(feature_names, fw)
    fw.close()
    print('Write words done.')
    fw = codecs.open(ftopics_words, 'wb')
    pickle.dump(nmf.components_, fw)
    fw.close()
    print('Write topic_words done.') 
開發者ID:lijiancheng0614,項目名稱:poem_generator,代碼行數:20,代碼來源:get_topic.py

示例2: _fit_and_score_NMF

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import NMF [as 別名]
def _fit_and_score_NMF(self, new_residuals):
        """
        Factorizing a residual matrix, returning the approximate target, and an embedding.

        Arg types:
            * **new_residuals** *(COO Scipy matrix)* - The residual matrix.

        Return types:
            * **scores** *(COO Scipy matrix)* - The residual scores.
            * **W** *(Numpy array)* - The embedding matrix.
        """
        model = NMF(n_components=self.dimensions,
                    init="random",
                    verbose=False,
                    alpha=self.alpha)

        W = model.fit_transform(new_residuals)
        H = model.components_

        sub_scores = np.sum(np.multiply(W[self._index_1, :], H[:, self._index_2].T), axis=1)
        scores = np.maximum(self._residuals.data-sub_scores, 0)
        scores = sparse.csr_matrix((scores, (self._index_1, self._index_2)),
                                   shape=self._shape,
                                   dtype=np.float32)
        return scores, W 
開發者ID:benedekrozemberczki,項目名稱:karateclub,代碼行數:27,代碼來源:boostne.py

示例3: __init__

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import NMF [as 別名]
def __init__(self, n_topics=50, estimator='LDA'):
        """
        n_topics is the desired number of topics
        To use Latent Semantic Analysis, set estimator to 'LSA',
        To use Non-Negative Matrix Factorization, set estimator to 'NMF',
        otherwise, defaults to Latent Dirichlet Allocation ('LDA').
        """
        self.n_topics = n_topics

        if estimator == 'LSA':
            self.estimator = TruncatedSVD(n_components=self.n_topics)
        elif estimator == 'NMF':
            self.estimator = NMF(n_components=self.n_topics)
        else:
            self.estimator = LatentDirichletAllocation(n_topics=self.n_topics)

        self.model = Pipeline([
            ('norm', TextNormalizer()),
            ('tfidf', CountVectorizer(tokenizer=identity,
                                      preprocessor=None, lowercase=False)),
            ('model', self.estimator)
        ]) 
開發者ID:foxbook,項目名稱:atap,代碼行數:24,代碼來源:topics.py

示例4: fit_and_score_NMF

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import NMF [as 別名]
def fit_and_score_NMF(self, new_residuals):
        """
        Factorizing a residual matrix, returning the approximate target and an embedding.
        :param new_residuals: Input target matrix.
        :return scores: Approximate target matrix.
        :return W: Embedding matrix.
        """
        model = NMF(n_components=self.args.dimensions,
                    init="random",
                    verbose=False,
                    alpha=self.args.alpha)

        W = model.fit_transform(new_residuals)
        H = model.components_
        print("Scoring started.\n")
        sub_scores = np.sum(np.multiply(W[self.index_1, :], H[:, self.index_2].T), axis=1)
        scores = np.maximum(self.residuals.data-sub_scores, 0)
        scores = sparse.csr_matrix((scores, (self.index_1, self.index_2)),
                                   shape=self.shape,
                                   dtype=np.float32)
        return scores, W 
開發者ID:benedekrozemberczki,項目名稱:BoostedFactorization,代碼行數:23,代碼來源:boosted_embedding.py

示例5: factorize_nmf

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import NMF [as 別名]
def factorize_nmf():
    print('factorizing matrix')

    newsgroups_mmf_file = '/Users/fpena/tmp/nmf_graphlab/newsgroups/newsgroups_matrix.mmf'
    document_term_matrix = mmread(newsgroups_mmf_file)

    factorizer = decomposition.NMF(
        init="nndsvd", n_components=Constants.TOPIC_MODEL_NUM_TOPICS,
        max_iter=Constants.TOPIC_MODEL_ITERATIONS,
        alpha=Constants.NMF_REGULARIZATION,
        l1_ratio=Constants.NMF_REGULARIZATION_RATIO
    )
    document_topic_matrix = \
        factorizer.fit_transform(document_term_matrix)
    topic_term_matrix = factorizer.components_
    # mmwrite(mmf_file, small_matrix)
    # mmwrite(newsgroups_mmf_file, X) 
開發者ID:melqkiades,項目名稱:yelp,代碼行數:19,代碼來源:main.py

示例6: train_nmf

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import NMF [as 別名]
def train_nmf(corpus, n_topics=10, max_df=0.95, min_df=2,
              cleaning=clearstring, stop_words='english'):
    if cleaning is not None:
        for i in range(len(corpus)):
            corpus[i] = cleaning(corpus[i])
    tfidf_vectorizer = TfidfVectorizer(
        max_df=max_df, min_df=min_df, stop_words=stop_words)
    tfidf = tfidf_vectorizer.fit_transform(corpus)
    tfidf_features = tfidf_vectorizer.get_feature_names()
    nmf = NMF(
        n_components=n_topics,
        random_state=1,
        alpha=.1,
        l1_ratio=.5,
        init='nndsvd').fit(tfidf)
    return TOPIC(tfidf_features, nmf) 
開發者ID:huseinzol05,項目名稱:Python-DevOps,代碼行數:18,代碼來源:topic.py

示例7: nmf_to_onnx

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import NMF [as 別名]
def nmf_to_onnx(W, H, op_version=12):
    """
    The function converts a NMF described by matrices
    *W*, *H* (*WH* approximate training data *M*).
    into a function which takes two indices *(i, j)*
    and returns the predictions for it. It assumes
    these indices applies on the training data.
    """
    col = OnnxArrayFeatureExtractor(H, 'col')
    row = OnnxArrayFeatureExtractor(W.T, 'row')
    dot = OnnxMul(col, row, op_version=op_version)
    res = OnnxReduceSum(dot, output_names="rec", op_version=op_version)
    indices_type = np.array([0], dtype=np.int64)
    onx = res.to_onnx(inputs={'col': indices_type,
                              'row': indices_type},
                      outputs=[('rec', FloatTensorType((None, 1)))],
                      target_opset=op_version)
    return onx 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:20,代碼來源:plot_nmf.py

示例8: get_nmf_decomposition

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import NMF [as 別名]
def get_nmf_decomposition(
    X: np.ndarray,
    n_roles: int,
) -> FactorTuple:
    """
    Compute NMF decomposition
    :param X: matrix to factor
    :param n_roles: rank of decomposition
    """
    nmf = NMF(n_components=n_roles, solver='mu', init='nndsvda')
    with warnings.catch_warnings():
        # ignore convergence warning from NMF since
        # this will result in a large cost anyways
        warnings.simplefilter('ignore')
        G = nmf.fit_transform(X)
        F = nmf.components_
    return G, F 
開發者ID:dkaslovsky,項目名稱:GraphRole,代碼行數:19,代碼來源:factor.py

示例9: test_objectmapper

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import NMF [as 別名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.decomposition.PCA, decomposition.PCA)
        self.assertIs(df.decomposition.IncrementalPCA,
                      decomposition.IncrementalPCA)
        self.assertIs(df.decomposition.KernelPCA, decomposition.KernelPCA)
        self.assertIs(df.decomposition.FactorAnalysis,
                      decomposition.FactorAnalysis)
        self.assertIs(df.decomposition.FastICA, decomposition.FastICA)
        self.assertIs(df.decomposition.TruncatedSVD, decomposition.TruncatedSVD)
        self.assertIs(df.decomposition.NMF, decomposition.NMF)
        self.assertIs(df.decomposition.SparsePCA, decomposition.SparsePCA)
        self.assertIs(df.decomposition.MiniBatchSparsePCA,
                      decomposition.MiniBatchSparsePCA)
        self.assertIs(df.decomposition.SparseCoder, decomposition.SparseCoder)
        self.assertIs(df.decomposition.DictionaryLearning,
                      decomposition.DictionaryLearning)
        self.assertIs(df.decomposition.MiniBatchDictionaryLearning,
                      decomposition.MiniBatchDictionaryLearning)

        self.assertIs(df.decomposition.LatentDirichletAllocation,
                      decomposition.LatentDirichletAllocation) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:24,代碼來源:test_decomposition.py

示例10: factorize_string_matrix

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import NMF [as 別名]
def factorize_string_matrix(self):
        """
        Creating string labels by factorization.
        """
        rows = [node for node, features in self.binned_features.items() for feature in features]
        columns = [int(feature) for node, features in self.binned_features.items() for feature in features]
        scores = [1 for i in range(len(columns))]
        row_number = max(rows)+1
        column_number = max(columns)+1
        features = csr_matrix((scores, (rows, columns)), shape=(row_number, column_number))
        model = NMF(n_components=self.args.factors, init="random", random_state=self.args.seed, alpha=self.args.beta)
        factors = model.fit_transform(features)
        kmeans = KMeans(n_clusters=self.args.clusters, random_state=self.args.seed).fit(factors)
        labels = kmeans.labels_
        features = {str(node): str(labels[node]) for node in self.graph.nodes()}
        return features 
開發者ID:benedekrozemberczki,項目名稱:role2vec,代碼行數:18,代碼來源:motif_count.py

示例11: apply

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import NMF [as 別名]
def apply( self, X, k = 2 ):
		"""
		Apply NMF to the specified document-term matrix X.
		"""
		import nimfa
		self.W = None
		self.H = None
		initialize_only = self.max_iters < 1
		if self.update == "euclidean":
			objective = "fro"
		else:
			objective = "div"
		lsnmf = nimfa.Lsnmf(X, max_iter = self.max_iters, rank = k, seed = self.init_strategy, update = self.update, objective = objective, test_conv = self.test_conv ) 
		res = lsnmf()
		# TODO: fix
		try:
			self.W = res.basis().todense() 
			self.H = res.coef().todense()
		except:
			self.W = res.basis()
			self.H = res.coef()
		# last number of iterations
		self.n_iter = res.n_iter 
開發者ID:derekgreene,項目名稱:topic-stability,代碼行數:25,代碼來源:nmf.py

示例12: get_topics_from_model

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import NMF [as 別名]
def get_topics_from_model(
			self,
			pipe=Pipeline([
				('tfidf', TfidfTransformer(sublinear_tf=True)),
				('nmf', (NMF(n_components=30, alpha=.1, l1_ratio=.5, random_state=0)))]),
			num_terms_per_topic=10):
		'''

		Parameters
		----------
		pipe : Pipeline
			For example, `Pipeline([
				('tfidf', TfidfTransformer(sublinear_tf=True)),
				('nmf', (NMF(n_components=30, alpha=.1, l1_ratio=.5, random_state=0)))])`
			The last transformer must populate a `components_` attribute when finished.
		num_terms_per_topic : int

		Returns
		-------
		dict: {term: [term1, ...], ...}
		'''
		pipe.fit_transform(self.sentX)

		topic_model = {}
		for topic_idx, topic in enumerate(pipe._final_estimator.components_):
			term_list = [self.termidxstore.getval(i)
			             for i
			             in topic.argsort()[:-num_terms_per_topic - 1:-1]
			             if topic[i] > 0]
			if len(term_list) > 0:
				topic_model['%s. %s' % (topic_idx, term_list[0])] = term_list
			else:
				Warning("Topic %s has no terms with scores > 0. Omitting." % (topic_idx))
		return topic_model 
開發者ID:JasonKessler,項目名稱:scattertext,代碼行數:36,代碼來源:SentencesForTopicModeling.py

示例13: skNMF

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import NMF [as 別名]
def skNMF(data, dim):
    model = NMF(n_components=dim)
    model.fit(data)
    return model.transform(data)

# Max-min norm 
開發者ID:cxy1997,項目名稱:MNIST-baselines,代碼行數:8,代碼來源:utils.py

示例14: _sklearn_pretrain

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import NMF [as 別名]
def _sklearn_pretrain(self, i):
        """
        Pre-training a single layer of the model with sklearn.

        Arg types:
            * **i** *(int)* - The layer index.
        """
        nmf_model = NMF(n_components=self.layers[i],
                        init="random",
                        random_state=self.seed,
                        max_iter=self.pre_iterations)

        U = nmf_model.fit_transform(self._Z)
        V = nmf_model.components_
        return U, V 
開發者ID:benedekrozemberczki,項目名稱:karateclub,代碼行數:17,代碼來源:danmf.py

示例15: _pre_training

# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import NMF [as 別名]
def _pre_training(self):
        """
        Pre-training each NMF layer.
        """
        self._U_s = []
        self._V_s = []
        for i in range(self._p):
            self._setup_z(i)
            U, V = self._sklearn_pretrain(i)
            self._U_s.append(U)
            self._V_s.append(V) 
開發者ID:benedekrozemberczki,項目名稱:karateclub,代碼行數:13,代碼來源:danmf.py


注:本文中的sklearn.decomposition.NMF屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。