當前位置: 首頁>>代碼示例>>Python>>正文


Python pymc.MCMC屬性代碼示例

本文整理匯總了Python中pymc.MCMC屬性的典型用法代碼示例。如果您正苦於以下問題:Python pymc.MCMC屬性的具體用法?Python pymc.MCMC怎麽用?Python pymc.MCMC使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在pymc的用法示例。


在下文中一共展示了pymc.MCMC屬性的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: show_summary

# 需要導入模塊: import pymc [as 別名]
# 或者: from pymc import MCMC [as 別名]
def show_summary(pymc_model, mcmc, map):
    """
    Show summary statistics of MCMC and MAP estimates.

    Parameters
    ----------
    pymc_model : pymc model
       The pymc model to sample.
    map : pymc.MAP
       The MAP fit.
    mcmc : pymc.MCMC
       MCMC samples

    TODO
    ----
    * Automatically determine appropriate number of decimal places from statistical uncertainty.
    * Automatically adjust concentration units (e.g. pM, nM, uM) depending on estimated affinity.

    """

    # Compute summary statistics.
    DeltaG = map.DeltaG.value
    dDeltaG = mcmc.DeltaG.trace().std()
    Kd = np.exp(map.DeltaG.value)
    dKd = np.exp(mcmc.DeltaG.trace()).std()
    text = "DeltaG = %.1f +- %.1f kT\n" % (DeltaG, dDeltaG)
    if (Kd < 1e-12):
        text += "Kd = %.1f nM +- %.1f fM" % (Kd/1e-15, dKd/1e-15)
    elif (Kd < 1e-9):
        text += "Kd = %.1f pM +- %.1f pM" % (Kd/1e-12, dKd/1e-12)
    elif (Kd < 1e-6):
        text += "Kd = %.1f nM +- %.1f nM" % (Kd/1e-9, dKd/1e-9)
    elif (Kd < 1e-3):
        text += "Kd = %.1f uM +- %.1f uM" % (Kd/1e-6, dKd/1e-6)
    elif (Kd < 1):
        text += "Kd = %.1f mM +- %.1f mM" % (Kd/1e-3, dKd/1e-3)
    else:
        text += "Kd = %.3e M +- %.3e M" % (Kd, dKd)
    text += '\n'
    print(text) 
開發者ID:choderalab,項目名稱:assaytools,代碼行數:42,代碼來源:pymcmodels.py

示例2: t_test

# 需要導入模塊: import pymc [as 別名]
# 或者: from pymc import MCMC [as 別名]
def t_test(df, groups=None, groupcol='group', valuecol='value', pooling='default', samples=40000, burns=10000, thin=1, *args, **kwargs):
    """Bayesian t-Test

    Given a dataframe of the form:

    |Group  |Observed Value|
    |-------|--------------|
    |<group>|       <float>|
    ...

    Perform pairwise t-Tests on groups

    Inputs:
    dataframe -- Pandas dataframe of form above
    groups -- (optional) list of groups to look at. Excluded looks at all groups
    groupcol -- string for indexing dataframe column for groups
    valuecol -- string for indexing dataframe column for values of observations
    pooling -- strategy for using pooled data in test. 
               * 'default' -- uses pairwise pooled data
               * 'all' -- uses pooled data from all groups
    samples -- number of samples to use in MCMC
    burns -- number of burns to use in MCMC
    thin -- thinning to use in MCMC
    progress_bar -- boolean, show progress bar of sampler (PyMC progress bar)

    Returns:
    (description, raw_data)
    description: table describing output data
    raw_data: dictionary of output data

    """
    test = TTest(df, groups, groupcol, valuecol,
                 pooling, samples, burns, thin, *args, **kwargs)
    return test.summary() 
開發者ID:HHammond,項目名稱:kcbo,代碼行數:36,代碼來源:t_test.py

示例3: run_mcmc

# 需要導入模塊: import pymc [as 別名]
# 或者: from pymc import MCMC [as 別名]
def run_mcmc(self, dbfilename='output'):
        """
        Sample the model with pymc using sensible defaults.

        Parameters
        ----------
        dbfilename : str, optional, default='output'
           Name of storage filename for database.

        Returns
        -------
        mcmc : pymc.MCMC
           The MCMC samples.

        """

        # DEBUG: Write model
        print('Writing graph...')
        pymc.graph.moral_graph(self.model, format='ps')

        # Sample the model with pymc
        # TODO: Allow
        mcmc = pymc.MCMC(self.model, db='sqlite', name='output', verbose=True)

        nthin = 10
        nburn = nthin*100
        niter = nthin*100

        # Specify initial parameter standard deviations to apply to specific classes of parameters
        keywords = {
            'concentration' : 0.1,
            'affinity' : 0.1,
            'volume' : 0.01,
        }

        print('Assigning initial guesses for Metropolis step method proposal standard deviations:')
        for stochastic in self.model.stochastics:
            if hasattr(stochastic, '__name__'):
                sigma = 1.0 # default proposal standard deviation
                parameter_name = stochastic.__name__
                # See if we have specified a special standard deviation for this parameter class
                for keyword in keywords:
                    if keyword in parameter_name:
                        sigma = keywords[keyword]

                print('%-64ss : %8.5f' % (parameter_name, sigma))
                mcmc.use_step_method(pymc.Metropolis, stochastic, proposal_sd=sigma, proposal_distribution=None)

        print('Running MCMC...')
        mcmc.sample(iter=(nburn+niter), burn=nburn, thin=nthin, progress_bar=True, tune_throughout=True)

        # Close the database.
        #mcmc.db.close()

        return mcmc 
開發者ID:choderalab,項目名稱:assaytools,代碼行數:57,代碼來源:analysis.py

示例4: run_mcmc

# 需要導入模塊: import pymc [as 別名]
# 或者: from pymc import MCMC [as 別名]
def run_mcmc(pymc_model, nthin=20, nburn=0, niter=20000, map=True, db='ram', dbname=None):
    """
    Sample the model with pymc. Initial values of the parameters can be chosen with a maximum a posteriori estimate.

    Parameters
    ----------
    pymc_model : pymc model
       The pymc model to sample.
    nthin: int
        The number of MCMC steps that constitute 1 iteration.
    nburn: int
        The number of MCMC iterations during the burn-in.
    niter: int
        The number of production iterations.
    map: bool
        Whether to initialize the parameters before MCMC with the maximum a posteriori estimate.
    db : str
        How to store model, default = 'ram' means not storing it. To store model use storage = 'pickle'. If not,
        supply the name of the database backend that will store the values of the stochastics and deterministics sampled
        during the MCMC loop.
   dbname : str
        name for storage object, default = None. To store model use e.g. dbname = 'my_mcmc.pickle'

    Returns
    -------
    mcmc : pymc.MCMC
       The MCMC samples.

    """
    # Find MAP:
    if map == True:
        pymc.MAP(pymc_model).fit()

    # Sample the model with pymc
    mcmc = pymc.MCMC(pymc_model, db=db, dbname=dbname, name='Sampler', verbose=True)

    step_methods = 'AdaptiveMetropolis'
    mcmc.use_step_method(pymc.Metropolis, getattr(pymc_model, 'DeltaG'), proposal_sd=0.1, proposal_distribution='Normal')
    mcmc.use_step_method(pymc.Metropolis, getattr(pymc_model, 'log_F_PL'), proposal_sd=0.1, proposal_distribution='Normal')
    mcmc.use_step_method(pymc.Metropolis, getattr(pymc_model, 'log_F_P'), proposal_sd=0.1, proposal_distribution='Normal')
    mcmc.use_step_method(pymc.Metropolis, getattr(pymc_model, 'log_F_L'), proposal_sd=0.1, proposal_distribution='Normal')
    mcmc.use_step_method(pymc.Metropolis, getattr(pymc_model, 'log_F_plate'), proposal_sd=0.1, proposal_distribution='Normal')
    mcmc.use_step_method(pymc.Metropolis, getattr(pymc_model, 'log_F_buffer'), proposal_sd=0.1, proposal_distribution='Normal')
    mcmc.use_step_method(pymc.Metropolis, getattr(pymc_model, 'log_F_buffer_control'), proposal_sd=0.1, proposal_distribution='Normal')
    if hasattr(pymc_model, 'epsilon_ex'):
        mcmc.use_step_method(pymc.Metropolis, getattr(pymc_model, 'epsilon_ex'), proposal_sd=10000.0, proposal_distribution='Normal')
    if hasattr(pymc_model, 'epsilon_em'):
        mcmc.use_step_method(pymc.Metropolis, getattr(pymc_model, 'epsilon_em'), proposal_sd=10000.0, proposal_distribution='Normal')
    # Uncomment below to use log_F_PL highly correlated with DeltaG to improve sampling somewhat.
    #mcmc.use_step_method(pymc.AdaptiveMetropolis, [pymc_model.log_F_PL, pymc_model.DeltaG], scales={ pymc_model.log_F_PL : 0.1, pymc_model.DeltaG : 0.1  })

    mcmc.sample(iter=(nburn+niter), burn=nburn, thin=nthin, progress_bar=False, tune_throughout=True)

    return mcmc 
開發者ID:choderalab,項目名稱:assaytools,代碼行數:56,代碼來源:pymcmodels.py

示例5: show_summary

# 需要導入模塊: import pymc [as 別名]
# 或者: from pymc import MCMC [as 別名]
def show_summary(self, mcmc, map_fit=None):
        """
        Show summary statistics of MCMC and (optionally) MAP estimates.

        Parameters
        ----------
        mcmc : pymc.MCMC
           MCMC samples
        map_fit : pymc.MAP, optional, default=None
           The MAP fit.

        TODO
        ----
        * Automatically determine appropriate number of decimal places from statistical uncertainty.
        * Automatically adjust concentration units (e.g. pM, nM, uM) depending on estimated affinity.

        """

        # Compute summary statistics
        alpha = 0.95 # confidence interval width
        from scipy.stats import bayes_mvs
        for group in self.parameter_names:
            print(group)
            for name in self.parameter_names[group]:
                try:
                    if map_fit:
                        mle = getattr(map_fit, name).value
                    else:
                        mle = getattr(mcmc, name).trace().mean()
                    trace = getattr(mcmc, name).trace()
                    mean_cntr, var_cntr, std_cntr = bayes_mvs(trace, alpha=alpha)
                    (center, (lower, upper)) = mean_cntr
                    if trace.std() == 0.0:
                        lower = upper = trace[0]

                    if ('concentration' in name) or ('volume' in name):
                        print("%-64s : initial %7.1e final %7.1e : %7.1e [%7.1e, %7.1e]" % (name, trace[0], trace[-1], mle, lower, upper))
                    else:
                        print("%-64s : initial %7.1f final %7.1f : %7.1f [%7.1f, %7.1f]" % (name, trace[0], trace[-1], mle, lower, upper))

                except AttributeError as e:
                    # Skip observed stochastics
                    pass
            print('') 
開發者ID:choderalab,項目名稱:assaytools,代碼行數:46,代碼來源:analysis.py

示例6: generate_plots

# 需要導入模塊: import pymc [as 別名]
# 或者: from pymc import MCMC [as 別名]
def generate_plots(self, mcmc, map_fit=None, pdf_filename=None):
        """
        Generate interactive or PDF plots from MCMC trace.

        Parameters
        ----------
        mcmc : pymc.MCMC
           MCMC samples to plot
        map_fit : pymc.MAP, optional, default=None
           Plot the maximum a posteriori (MAP) estimate if provided.
        pdf_filename : str, optional, default=None
           If specified, generate a PDF containing plots.

        """
        alpha = 0.95 # confidence interval width
        print('')
        print('Generating plots...')
        from scipy.stats import bayes_mvs
        with PdfPages(pdf_filename) as pdf:
            for group in self.parameter_names:
                print(group)
                for name in self.parameter_names[group]:
                    try:
                        if map_fit:
                            mle = getattr(map_fit, name).value
                        else:
                            mle = getattr(mcmc, name).trace().mean()
                        trace = getattr(mcmc, name).trace()
                        mean_cntr, var_cntr, std_cntr = bayes_mvs(trace, alpha=alpha)
                        (center, (lower, upper)) = mean_cntr
                        if trace.std() == 0.0:
                            lower = upper = trace[0]

                        plt.figure(figsize=(12, 8))
                        plt.hold(True)
                        niterations = len(trace)
                        plt.plot([0, niterations], [mle, mle], 'r-')
                        plt.plot(trace, 'k.')
                        plt.xlabel('iteration')
                        plt.ylabel(name)
                        plt.title(name)
                        pdf.savefig()
                        plt.close()

                    except AttributeError as e:
                        pass 
開發者ID:choderalab,項目名稱:assaytools,代碼行數:48,代碼來源:analysis.py


注:本文中的pymc.MCMC屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。