本文整理匯總了Python中object_detection.protos.input_reader_pb2.PNG_MASKS屬性的典型用法代碼示例。如果您正苦於以下問題:Python input_reader_pb2.PNG_MASKS屬性的具體用法?Python input_reader_pb2.PNG_MASKS怎麽用?Python input_reader_pb2.PNG_MASKS使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類object_detection.protos.input_reader_pb2
的用法示例。
在下文中一共展示了input_reader_pb2.PNG_MASKS屬性的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testNewMaskType
# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import PNG_MASKS [as 別名]
def testNewMaskType(self):
"""Tests that mask type can be overwritten in input readers."""
original_mask_type = input_reader_pb2.NUMERICAL_MASKS
new_mask_type = input_reader_pb2.PNG_MASKS
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
train_input_reader = pipeline_config.train_input_reader
train_input_reader.mask_type = original_mask_type
eval_input_reader = pipeline_config.eval_input_reader.add()
eval_input_reader.mask_type = original_mask_type
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"mask_type": new_mask_type}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
self.assertEqual(new_mask_type, configs["train_input_config"].mask_type)
self.assertEqual(new_mask_type, configs["eval_input_configs"][0].mask_type)
示例2: testUpdateMaskTypeForAllInputConfigs
# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import PNG_MASKS [as 別名]
def testUpdateMaskTypeForAllInputConfigs(self):
original_mask_type = input_reader_pb2.NUMERICAL_MASKS
new_mask_type = input_reader_pb2.PNG_MASKS
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
train_config = pipeline_config.train_input_reader
train_config.mask_type = original_mask_type
eval_1 = pipeline_config.eval_input_reader.add()
eval_1.mask_type = original_mask_type
eval_1.name = "eval_1"
eval_2 = pipeline_config.eval_input_reader.add()
eval_2.mask_type = original_mask_type
eval_2.name = "eval_2"
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"mask_type": new_mask_type}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
self.assertEqual(configs["train_input_config"].mask_type, new_mask_type)
for eval_input_config in configs["eval_input_configs"]:
self.assertEqual(eval_input_config.mask_type, new_mask_type)
示例3: testDecodeEmptyPngInstanceMasks
# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import PNG_MASKS [as 別名]
def testDecodeEmptyPngInstanceMasks(self):
image_tensor = np.random.randint(256, size=(10, 10, 3)).astype(np.uint8)
encoded_jpeg = self._EncodeImage(image_tensor)
encoded_masks = []
example = tf.train.Example(
features=tf.train.Features(
feature={
'image/encoded': self._BytesFeature(encoded_jpeg),
'image/format': self._BytesFeature('jpeg'),
'image/object/mask': self._BytesFeature(encoded_masks),
'image/height': self._Int64Feature([10]),
'image/width': self._Int64Feature([10]),
})).SerializeToString()
example_decoder = tf_example_decoder.TfExampleDecoder(
load_instance_masks=True, instance_mask_type=input_reader_pb2.PNG_MASKS)
tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))
with self.test_session() as sess:
tensor_dict = sess.run(tensor_dict)
self.assertAllEqual(
tensor_dict[fields.InputDataFields.groundtruth_instance_masks].shape,
[0, 10, 10])
示例4: testNewMaskType
# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import PNG_MASKS [as 別名]
def testNewMaskType(self):
"""Tests that mask type can be overwritten in input readers."""
original_mask_type = input_reader_pb2.NUMERICAL_MASKS
new_mask_type = input_reader_pb2.PNG_MASKS
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
train_input_reader = pipeline_config.train_input_reader
train_input_reader.mask_type = original_mask_type
eval_input_reader = pipeline_config.eval_input_reader
eval_input_reader.mask_type = original_mask_type
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
configs = config_util.merge_external_params_with_configs(
configs, mask_type=new_mask_type)
self.assertEqual(new_mask_type, configs["train_input_config"].mask_type)
self.assertEqual(new_mask_type, configs["eval_input_config"].mask_type)
示例5: testDecodePngInstanceMasks
# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import PNG_MASKS [as 別名]
def testDecodePngInstanceMasks(self):
image_tensor = np.random.randint(256, size=(10, 10, 3)).astype(np.uint8)
encoded_jpeg = self._EncodeImage(image_tensor)
mask_1 = np.random.randint(0, 2, size=(10, 10, 1)).astype(np.uint8)
mask_2 = np.random.randint(0, 2, size=(10, 10, 1)).astype(np.uint8)
encoded_png_1 = self._EncodeImage(mask_1, encoding_type='png')
decoded_png_1 = np.squeeze(mask_1.astype(np.float32))
encoded_png_2 = self._EncodeImage(mask_2, encoding_type='png')
decoded_png_2 = np.squeeze(mask_2.astype(np.float32))
encoded_masks = [encoded_png_1, encoded_png_2]
decoded_masks = np.stack([decoded_png_1, decoded_png_2])
example = tf.train.Example(
features=tf.train.Features(
feature={
'image/encoded':
dataset_util.bytes_feature(encoded_jpeg),
'image/format':
dataset_util.bytes_feature('jpeg'),
'image/object/mask':
dataset_util.bytes_list_feature(encoded_masks)
})).SerializeToString()
example_decoder = tf_example_decoder.TfExampleDecoder(
load_instance_masks=True, instance_mask_type=input_reader_pb2.PNG_MASKS)
tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))
with self.test_session() as sess:
tensor_dict = sess.run(tensor_dict)
self.assertAllEqual(
decoded_masks,
tensor_dict[fields.InputDataFields.groundtruth_instance_masks])
示例6: testDecodeEmptyPngInstanceMasks
# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import PNG_MASKS [as 別名]
def testDecodeEmptyPngInstanceMasks(self):
image_tensor = np.random.randint(256, size=(10, 10, 3)).astype(np.uint8)
encoded_jpeg = self._EncodeImage(image_tensor)
encoded_masks = []
example = tf.train.Example(
features=tf.train.Features(
feature={
'image/encoded':
dataset_util.bytes_feature(encoded_jpeg),
'image/format':
dataset_util.bytes_feature('jpeg'),
'image/object/mask':
dataset_util.bytes_list_feature(encoded_masks),
'image/height':
dataset_util.int64_feature(10),
'image/width':
dataset_util.int64_feature(10),
})).SerializeToString()
example_decoder = tf_example_decoder.TfExampleDecoder(
load_instance_masks=True, instance_mask_type=input_reader_pb2.PNG_MASKS)
tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))
with self.test_session() as sess:
tensor_dict = sess.run(tensor_dict)
self.assertAllEqual(
tensor_dict[fields.InputDataFields.groundtruth_instance_masks].shape,
[0, 10, 10])
示例7: testDecodePngInstanceMasks
# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import PNG_MASKS [as 別名]
def testDecodePngInstanceMasks(self):
image_tensor = np.random.randint(256, size=(10, 10, 3)).astype(np.uint8)
encoded_jpeg = self._EncodeImage(image_tensor)
mask_1 = np.random.randint(0, 2, size=(10, 10, 1)).astype(np.uint8)
mask_2 = np.random.randint(0, 2, size=(10, 10, 1)).astype(np.uint8)
encoded_png_1 = self._EncodeImage(mask_1, encoding_type='png')
decoded_png_1 = np.squeeze(mask_1.astype(np.float32))
encoded_png_2 = self._EncodeImage(mask_2, encoding_type='png')
decoded_png_2 = np.squeeze(mask_2.astype(np.float32))
encoded_masks = [encoded_png_1, encoded_png_2]
decoded_masks = np.stack([decoded_png_1, decoded_png_2])
example = tf.train.Example(
features=tf.train.Features(
feature={
'image/encoded': self._BytesFeature(encoded_jpeg),
'image/format': self._BytesFeature('jpeg'),
'image/object/mask': self._BytesFeature(encoded_masks)
})).SerializeToString()
example_decoder = tf_example_decoder.TfExampleDecoder(
load_instance_masks=True, instance_mask_type=input_reader_pb2.PNG_MASKS)
tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))
with self.test_session() as sess:
tensor_dict = sess.run(tensor_dict)
self.assertAllEqual(
decoded_masks,
tensor_dict[fields.InputDataFields.groundtruth_instance_masks])