當前位置: 首頁>>代碼示例>>Python>>正文


Python types.NCHW屬性代碼示例

本文整理匯總了Python中nvidia.dali.types.NCHW屬性的典型用法代碼示例。如果您正苦於以下問題:Python types.NCHW屬性的具體用法?Python types.NCHW怎麽用?Python types.NCHW使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在nvidia.dali.types的用法示例。


在下文中一共展示了types.NCHW屬性的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import NCHW [as 別名]
def __init__(self, batch_size, num_threads, device_id, rec_path, idx_path,
                 shard_id, num_shards, crop_shape,
                 nvjpeg_padding, prefetch_queue=3,
                 output_layout=types.NCHW, pad_output=True, dtype='float16'):
        super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed = 12 + device_id, prefetch_queue_depth = prefetch_queue)
        self.input = ops.MXNetReader(path = [rec_path], index_path=[idx_path],
                                     random_shuffle=True, shard_id=shard_id, num_shards=num_shards)

        self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB,
                                        device_memory_padding = nvjpeg_padding,
                                        host_memory_padding = nvjpeg_padding)
        self.rrc = ops.RandomResizedCrop(device = "gpu", size = crop_shape)
        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                                            output_dtype = types.FLOAT16 if dtype == 'float16' else types.FLOAT,
                                            output_layout = output_layout,
                                            crop = crop_shape,
                                            pad_output = pad_output,
                                            image_type = types.RGB,
                                            mean = _mean_pixel,
                                            std =  _std_pixel)
        self.coin = ops.CoinFlip(probability = 0.5) 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:23,代碼來源:dali.py

示例2: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import NCHW [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, size):
        super(HybridValPipe, self).__init__(batch_size, num_threads, device_id, seed = 12 + device_id)
        if torch.distributed.is_initialized():
            local_rank = torch.distributed.get_rank()
            world_size = torch.distributed.get_world_size()
        else:
            local_rank = 0
            world_size = 1

        self.input = ops.FileReader(
                file_root = data_dir,
                shard_id = local_rank,
                num_shards = world_size,
                random_shuffle = False)

        self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB)
        self.res = ops.Resize(device = "gpu", resize_shorter = size)
        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                output_dtype = types.FLOAT,
                output_layout = types.NCHW,
                crop = (crop, crop),
                image_type = types.RGB,
                mean = [0.485 * 255,0.456 * 255,0.406 * 255],
                std = [0.229 * 255,0.224 * 255,0.225 * 255]) 
開發者ID:d-li14,項目名稱:HBONet,代碼行數:26,代碼來源:dataloaders.py

示例3: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import NCHW [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, seed=12, local_rank=0, world_size=1,
                 spos_pre=False):
        super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed=seed + device_id)
        color_space_type = types.BGR if spos_pre else types.RGB
        self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size, random_shuffle=True)
        self.decode = ops.ImageDecoder(device="mixed", output_type=color_space_type)
        self.res = ops.RandomResizedCrop(device="gpu", size=crop,
                                         interp_type=types.INTERP_LINEAR if spos_pre else types.INTERP_TRIANGULAR)
        self.twist = ops.ColorTwist(device="gpu")
        self.jitter_rng = ops.Uniform(range=[0.6, 1.4])
        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT,
                                            output_layout=types.NCHW,
                                            image_type=color_space_type,
                                            mean=0. if spos_pre else [0.485 * 255, 0.456 * 255, 0.406 * 255],
                                            std=1. if spos_pre else [0.229 * 255, 0.224 * 255, 0.225 * 255])
        self.coin = ops.CoinFlip(probability=0.5) 
開發者ID:microsoft,項目名稱:nni,代碼行數:19,代碼來源:dataloader.py

示例4: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import NCHW [as 別名]
def __init__(self, name, batch_size, num_workers, device_id, num_gpu,
                 root=os.path.expanduser('~/.mxnet/datasets/face')):
        super().__init__(batch_size, num_workers, device_id, seed=12 + device_id)

        idx_files = [os.path.join(root, name, "train.idx")]
        rec_files = [os.path.join(root, name, "train.rec")]
        prop = open(os.path.join(root, name, "property"), "r").read().strip().split(',')
        assert len(prop) == 3
        self.num_classes = int(prop[0])
        self.image_size = [int(prop[1]), int(prop[2])]

        self._input = ops.MXNetReader(path=rec_files, index_path=idx_files, random_shuffle=True,
                                      num_shards=num_gpu, tensor_init_bytes=self.image_size[0] * self.image_size[1] * 8)
        self._decode = ops.nvJPEGDecoder(device="mixed", output_type=types.RGB)

        self._cmnp = ops.CropMirrorNormalize(device="gpu", output_dtype=types.FLOAT, output_layout=types.NCHW,
                                             crop=self.image_size, image_type=types.RGB,
                                             mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5])
        self._contrast = ops.Contrast(device="gpu", )
        self._saturation = ops.Saturation(device="gpu", )
        self._brightness = ops.Brightness(device="gpu", )

        self._uniform = ops.Uniform(range=(0.7, 1.3))
        self._coin = ops.CoinFlip(probability=0.5)
        self.iter = 0 
開發者ID:THUFutureLab,項目名稱:gluon-face,代碼行數:27,代碼來源:dali_utils.py

示例5: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import NCHW [as 別名]
def __init__(self, batch_size, num_threads, shard_id, image_dir, file_list, nvjpeg_padding,
                 prefetch_queue=3, seed=1, num_shards=1, channel_last=True,
                 spatial_size=(224, 224), dtype="half",
                 mean=_pixel_mean, std=_pixel_std, pad_output=True):
        super(TrainPipeline, self).__init__(
            batch_size, num_threads, shard_id, seed=seed, prefetch_queue_depth=prefetch_queue)
        self.input = ops.FileReader(file_root=image_dir, file_list=file_list,
                                    random_shuffle=True, num_shards=num_shards, shard_id=shard_id)
        self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB,
                                       device_memory_padding=nvjpeg_padding,
                                       host_memory_padding=nvjpeg_padding)

        self.rrc = ops.RandomResizedCrop(device="gpu", size=spatial_size)
        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT16 if dtype == "half" else types.FLOAT,
                                            output_layout=types.NHWC if channel_last else types.NCHW,
                                            crop=spatial_size,
                                            image_type=types.RGB,
                                            mean=mean,
                                            std=std,
                                            pad_output=pad_output)
        self.coin = ops.CoinFlip(probability=0.5) 
開發者ID:sony,項目名稱:nnabla-examples,代碼行數:24,代碼來源:data.py

示例6: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import NCHW [as 別名]
def __init__(self, batch_size, num_threads, device_id, rec_path, idx_path,
                 shard_id, num_shards, crop_shape, 
                 nvjpeg_padding, prefetch_queue=3,
                 seed=12, resize_shp=None,
                 output_layout=types.NCHW, pad_output=True, dtype='float16',
                 mlperf_print=True):

        super(HybridValPipe, self).__init__(
                batch_size, num_threads, device_id, 
                seed = seed + device_id,
                prefetch_queue_depth = prefetch_queue)

        self.input = ops.MXNetReader(path = [rec_path], index_path=[idx_path],
                                     random_shuffle=False, shard_id=shard_id, num_shards=num_shards)

        self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB,
                                        device_memory_padding = nvjpeg_padding,
                                        host_memory_padding = nvjpeg_padding)

        self.resize = ops.Resize(device = "gpu", resize_shorter=resize_shp) if resize_shp else None

        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                                            output_dtype = types.FLOAT16 if dtype == 'float16' else types.FLOAT,
                                            output_layout = output_layout,
                                            crop = crop_shape,
                                            pad_output = pad_output,
                                            image_type = types.RGB,
                                            mean = _mean_pixel,
                                            std =  _std_pixel)

        if mlperf_print:
            mx_resnet_print(
                    key=mlperf_log.INPUT_MEAN_SUBTRACTION,
                    val=_mean_pixel)
            mx_resnet_print(
                    key=mlperf_log.INPUT_RESIZE_ASPECT_PRESERVING)
            mx_resnet_print(
                    key=mlperf_log.INPUT_CENTRAL_CROP) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:40,代碼來源:dali.py

示例7: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import NCHW [as 別名]
def __init__(self, batch_size, device_id, file_root, annotations_file, num_gpus,
            output_fp16=False, output_nhwc=False, pad_output=False, num_threads=1, seed=15):
        super(COCOPipeline, self).__init__(batch_size=batch_size, device_id=device_id,
                                           num_threads=num_threads, seed = seed)

        try:
            shard_id = torch.distributed.get_rank()
        except RuntimeError:
            shard_id = 0

        self.input = ops.COCOReader(file_root = file_root, annotations_file = annotations_file,
                            shard_id = shard_id, num_shards = num_gpus, ratio=True, ltrb=True, random_shuffle=True)
        self.decode = ops.HostDecoder(device = "cpu", output_type = types.RGB)

        # Augumentation techniques
        self.crop = ops.SSDRandomCrop(device="cpu", num_attempts=1)
        self.twist = ops.ColorTwist(device="gpu")

        self.resize = ops.Resize(device = "gpu", resize_x = 300, resize_y = 300)

        output_dtype = types.FLOAT16 if output_fp16 else types.FLOAT
        output_layout = types.NHWC if output_nhwc else types.NCHW

        self.normalize = ops.CropMirrorNormalize(device="gpu", crop=(300, 300),
                                                 mean=[0.0, 0.0, 0.0],
                                                 std=[255.0, 255.0, 255.0],
                                                 mirror=0,
                                                 output_dtype=output_dtype,
                                                 output_layout=output_layout,
                                                 pad_output=pad_output)

        # Random variables
        self.rng1 = ops.Uniform(range=[0.5, 1.5])
        self.rng2 = ops.Uniform(range=[0.875, 1.125])
        self.rng3 = ops.Uniform(range=[-0.5, 0.5]) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:37,代碼來源:coco_pipeline.py

示例8: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import NCHW [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, dali_cpu=False, local_rank=0, world_size=1):
        super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed=12 + device_id)
        dali_device = "gpu"
        self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size, random_shuffle=True)
        self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)
        self.res = ops.RandomResizedCrop(device="gpu", size=crop, random_area=[0.08, 1.25])
        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT,
                                            output_layout=types.NCHW,
                                            image_type=types.RGB,
                                            mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
                                            std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
        self.coin = ops.CoinFlip(probability=0.5)
        print('DALI "{0}" variant'.format(dali_device)) 
開發者ID:Jzz24,項目名稱:pytorch_quantization,代碼行數:16,代碼來源:preprocess.py

示例9: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import NCHW [as 別名]
def __init__(self, name, batch_size, num_threads, device_id, num_shards, shard_id,
                 root=os.path.expanduser('~/.mxnet/datasets/face'), ):
        super().__init__(batch_size, num_threads, device_id, seed=12)

        idx_files = [os.path.join(root, name, "train.idx")]
        rec_files = [os.path.join(root, name, "train.rec")]
        prop = open(os.path.join(root, name, "property"), "r").read().strip().split(',')
        assert len(prop) == 3
        self.num_classes = int(prop[0])
        self.image_size = [int(prop[1]), int(prop[2])]
        self.size = 0
        for idx_file in idx_files:
            with open(idx_file, "r") as f:
                self.size += len(list(f.readlines()))

        self._input = ops.MXNetReader(path=rec_files, index_path=idx_files, random_shuffle=True,
                                      num_shards=num_shards, shard_id=shard_id, seed=12,
                                      tensor_init_bytes=self.image_size[0] * self.image_size[1] * 8)
        self._decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)

        self._cmnp = ops.CropMirrorNormalize(device="gpu",
                                             output_dtype=types.FLOAT,
                                             output_layout=types.NCHW,
                                             crop=self.image_size,
                                             image_type=types.RGB,
                                             mean=[0., 0., 0.],
                                             std=[255., 255., 255.])
        self._contrast = ops.Contrast(device="gpu")
        self._saturation = ops.Saturation(device="gpu")
        self._brightness = ops.Brightness(device="gpu")

        self._uniform = ops.Uniform(range=(0.7, 1.3))
        self._coin = ops.CoinFlip(probability=0.5) 
開發者ID:THUFutureLab,項目名稱:gluon-face,代碼行數:35,代碼來源:utils.py

示例10: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import NCHW [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, size,
                 mean, std, local_rank=0, world_size=1, dali_cpu=False, shuffle=False, fp16=False):

        # As we're recreating the Pipeline at every epoch, the seed must be -1 (random seed)
        super(HybridValPipe, self).__init__(batch_size, num_threads, device_id, seed=-1)

        # Enabling read_ahead slowed down processing ~40%
        # Note: initial_fill is for the shuffle buffer.  As we only want to see every example once, this is set to 1
        self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size, random_shuffle=shuffle, initial_fill=1)
        if dali_cpu:
            decode_device = "cpu"
            self.dali_device = "cpu"
            self.crop = ops.Crop(device="cpu", crop=(crop, crop))

        else:
            decode_device = "mixed"
            self.dali_device = "gpu"

            output_dtype = types.FLOAT
            if fp16:
                output_dtype = types.FLOAT16

            self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                                output_dtype=output_dtype,
                                                output_layout=types.NCHW,
                                                crop=(crop, crop),
                                                image_type=types.RGB,
                                                mean=mean,
                                                std=std)

        self.decode = ops.ImageDecoder(device=decode_device, output_type=types.RGB)

        # Resize to desired size.  To match torchvision dataloader, use triangular interpolation
        self.res = ops.Resize(device=self.dali_device, resize_shorter=size, interp_type=types.INTERP_TRIANGULAR) 
開發者ID:yaysummeriscoming,項目名稱:DALI_pytorch_demo,代碼行數:36,代碼來源:dali.py

示例11: get_rec_iter

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import NCHW [as 別名]
def get_rec_iter(args, kv=None):
    # resize is default base length of shorter edge for dataset;
    # all images will be reshaped to this size
    resize = int(args.resize)
    # target shape is final shape of images pipelined to network;
    # all images will be cropped to this size
    target_shape = tuple([int(l) for l in args.image_shape.split(',')])
    pad_output = target_shape[0] == 4
    gpus = list(map(int, filter(None, args.gpus.split(',')))) # filter to not encount eventually empty strings
    batch_size = args.batch_size//len(gpus)
    num_threads = args.dali_threads
    #db_folder = "/data/imagenet/train-480-val-256-recordio/"

    # the input_layout w.r.t. the model is the output_layout of the image pipeline
    output_layout = types.NHWC if args.input_layout == 'NHWC' else types.NCHW

    rank = kv.rank if kv else 0
    nWrk = kv.num_workers if kv else 1

    trainpipes = [HybridTrainPipe(batch_size     = batch_size,
                                  num_threads    = num_threads,
                                  device_id      = gpu_id,
                                  rec_path       = args.data_train,
                                  idx_path       = args.data_train_idx,
                                  shard_id       = gpus.index(gpu_id) + len(gpus)*rank,
                                  num_shards     = len(gpus)*nWrk,
                                  crop_shape     = target_shape[1:],
                                  output_layout  = output_layout,
                                  pad_output     = pad_output,
                                  dtype          = args.dtype,
                                  nvjpeg_padding = args.dali_nvjpeg_memory_padding * 1024 * 1024,
                                  prefetch_queue = args.dali_prefetch_queue) for gpu_id in gpus]

    valpipes = [HybridValPipe(batch_size     = batch_size,
                              num_threads    = num_threads,
                              device_id      = gpu_id,
                              rec_path       = args.data_val,
                              idx_path       = args.data_val_idx,
                              shard_id       = 0 if args.separ_val
                                                 else gpus.index(gpu_id) + len(gpus)*rank,
                              num_shards     = 1 if args.separ_val else len(gpus)*nWrk,
                              crop_shape     = target_shape[1:],
                              resize_shp     = resize,
                              output_layout  = output_layout,
                              pad_output     = pad_output,
                              dtype          = args.dtype,
                              nvjpeg_padding = args.dali_nvjpeg_memory_padding * 1024 * 1024,
                              prefetch_queue = args.dali_prefetch_queue) for gpu_id in gpus] if args.data_val else None
    trainpipes[0].build()
    if args.data_val:
        valpipes[0].build()

    if args.num_examples < trainpipes[0].epoch_size("Reader"):
        warnings.warn("{} training examples will be used, although full training set contains {} examples".format(args.num_examples, trainpipes[0].epoch_size("Reader")))
    dali_train_iter = DALIClassificationIterator(trainpipes, args.num_examples // nWrk)
    dali_val_iter = DALIClassificationIterator(valpipes, valpipes[0].epoch_size("Reader") // (1 if args.separ_val else nWrk), fill_last_batch = False) if args.data_val else None
    return dali_train_iter, dali_val_iter 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:59,代碼來源:dali.py


注:本文中的nvidia.dali.types.NCHW屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。