當前位置: 首頁>>代碼示例>>Python>>正文


Python types.INTERP_TRIANGULAR屬性代碼示例

本文整理匯總了Python中nvidia.dali.types.INTERP_TRIANGULAR屬性的典型用法代碼示例。如果您正苦於以下問題:Python types.INTERP_TRIANGULAR屬性的具體用法?Python types.INTERP_TRIANGULAR怎麽用?Python types.INTERP_TRIANGULAR使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在nvidia.dali.types的用法示例。


在下文中一共展示了types.INTERP_TRIANGULAR屬性的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import INTERP_TRIANGULAR [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, seed=12, local_rank=0, world_size=1,
                 spos_pre=False):
        super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed=seed + device_id)
        color_space_type = types.BGR if spos_pre else types.RGB
        self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size, random_shuffle=True)
        self.decode = ops.ImageDecoder(device="mixed", output_type=color_space_type)
        self.res = ops.RandomResizedCrop(device="gpu", size=crop,
                                         interp_type=types.INTERP_LINEAR if spos_pre else types.INTERP_TRIANGULAR)
        self.twist = ops.ColorTwist(device="gpu")
        self.jitter_rng = ops.Uniform(range=[0.6, 1.4])
        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT,
                                            output_layout=types.NCHW,
                                            image_type=color_space_type,
                                            mean=0. if spos_pre else [0.485 * 255, 0.456 * 255, 0.406 * 255],
                                            std=1. if spos_pre else [0.229 * 255, 0.224 * 255, 0.225 * 255])
        self.coin = ops.CoinFlip(probability=0.5) 
開發者ID:microsoft,項目名稱:nni,代碼行數:19,代碼來源:dataloader.py

示例2: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import INTERP_TRIANGULAR [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, dali_cpu=False):
        super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed = 12 + device_id)
        if torch.distributed.is_initialized():
            local_rank = torch.distributed.get_rank()
            world_size = torch.distributed.get_world_size()
        else:
            local_rank = 0
            world_size = 1

        self.input = ops.FileReader(
                file_root = data_dir,
                shard_id = local_rank,
                num_shards = world_size,
                random_shuffle = True)

        if dali_cpu:
            dali_device = "cpu"
            self.decode = ops.HostDecoderRandomCrop(device=dali_device, output_type=types.RGB,
                                                    random_aspect_ratio=[0.75, 4./3.],
                                                    random_area=[0.08, 1.0],
                                                    num_attempts=100)
        else:
            dali_device = "gpu"
            # This padding sets the size of the internal nvJPEG buffers to be able to handle all images from full-sized ImageNet
            # without additional reallocations
            self.decode = ops.nvJPEGDecoderRandomCrop(device="mixed", output_type=types.RGB, device_memory_padding=211025920, host_memory_padding=140544512,
                                                      random_aspect_ratio=[0.75, 4./3.],
                                                      random_area=[0.08, 1.0],
                                                      num_attempts=100)

        self.res = ops.Resize(device=dali_device, resize_x=crop, resize_y=crop, interp_type=types.INTERP_TRIANGULAR)
        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                                            output_dtype = types.FLOAT,
                                            output_layout = types.NCHW,
                                            crop = (crop, crop),
                                            image_type = types.RGB,
                                            mean = [0.485 * 255,0.456 * 255,0.406 * 255],
                                            std = [0.229 * 255,0.224 * 255,0.225 * 255])
        self.coin = ops.CoinFlip(probability = 0.5) 
開發者ID:d-li14,項目名稱:HBONet,代碼行數:41,代碼來源:dataloaders.py

示例3: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import INTERP_TRIANGULAR [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, size, local_rank=0, world_size=1):
        super(HybridValPipe, self).__init__(batch_size, num_threads, device_id, seed=12 + device_id)
        self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size,
                                    random_shuffle=False)
        self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)
        self.res = ops.Resize(device="gpu", resize_shorter=size, interp_type=types.INTERP_TRIANGULAR)
        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT,
                                            output_layout=types.NCHW,
                                            crop=(crop, crop),
                                            image_type=types.RGB,
                                            mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
                                            std=[0.229 * 255, 0.224 * 255, 0.225 * 255]) 
開發者ID:Jzz24,項目名稱:pytorch_quantization,代碼行數:15,代碼來源:preprocess.py

示例4: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import INTERP_TRIANGULAR [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, size,
                 mean, std, local_rank=0, world_size=1, dali_cpu=False, shuffle=False, fp16=False):

        # As we're recreating the Pipeline at every epoch, the seed must be -1 (random seed)
        super(HybridValPipe, self).__init__(batch_size, num_threads, device_id, seed=-1)

        # Enabling read_ahead slowed down processing ~40%
        # Note: initial_fill is for the shuffle buffer.  As we only want to see every example once, this is set to 1
        self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size, random_shuffle=shuffle, initial_fill=1)
        if dali_cpu:
            decode_device = "cpu"
            self.dali_device = "cpu"
            self.crop = ops.Crop(device="cpu", crop=(crop, crop))

        else:
            decode_device = "mixed"
            self.dali_device = "gpu"

            output_dtype = types.FLOAT
            if fp16:
                output_dtype = types.FLOAT16

            self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                                output_dtype=output_dtype,
                                                output_layout=types.NCHW,
                                                crop=(crop, crop),
                                                image_type=types.RGB,
                                                mean=mean,
                                                std=std)

        self.decode = ops.ImageDecoder(device=decode_device, output_type=types.RGB)

        # Resize to desired size.  To match torchvision dataloader, use triangular interpolation
        self.res = ops.Resize(device=self.dali_device, resize_shorter=size, interp_type=types.INTERP_TRIANGULAR) 
開發者ID:yaysummeriscoming,項目名稱:DALI_pytorch_demo,代碼行數:36,代碼來源:dali.py


注:本文中的nvidia.dali.types.INTERP_TRIANGULAR屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。