當前位置: 首頁>>代碼示例>>Python>>正文


Python types.FLOAT16屬性代碼示例

本文整理匯總了Python中nvidia.dali.types.FLOAT16屬性的典型用法代碼示例。如果您正苦於以下問題:Python types.FLOAT16屬性的具體用法?Python types.FLOAT16怎麽用?Python types.FLOAT16使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在nvidia.dali.types的用法示例。


在下文中一共展示了types.FLOAT16屬性的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import FLOAT16 [as 別名]
def __init__(self, batch_size, num_threads, device_id, rec_path, idx_path,
                 shard_id, num_shards, crop_shape,
                 nvjpeg_padding, prefetch_queue=3,
                 output_layout=types.NCHW, pad_output=True, dtype='float16'):
        super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed = 12 + device_id, prefetch_queue_depth = prefetch_queue)
        self.input = ops.MXNetReader(path = [rec_path], index_path=[idx_path],
                                     random_shuffle=True, shard_id=shard_id, num_shards=num_shards)

        self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB,
                                        device_memory_padding = nvjpeg_padding,
                                        host_memory_padding = nvjpeg_padding)
        self.rrc = ops.RandomResizedCrop(device = "gpu", size = crop_shape)
        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                                            output_dtype = types.FLOAT16 if dtype == 'float16' else types.FLOAT,
                                            output_layout = output_layout,
                                            crop = crop_shape,
                                            pad_output = pad_output,
                                            image_type = types.RGB,
                                            mean = _mean_pixel,
                                            std =  _std_pixel)
        self.coin = ops.CoinFlip(probability = 0.5) 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:23,代碼來源:dali.py

示例2: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import FLOAT16 [as 別名]
def __init__(self, batch_size, num_threads, shard_id, image_dir, file_list, nvjpeg_padding,
                 prefetch_queue=3, seed=1, num_shards=1, channel_last=True,
                 spatial_size=(224, 224), dtype="half",
                 mean=_pixel_mean, std=_pixel_std, pad_output=True):
        super(TrainPipeline, self).__init__(
            batch_size, num_threads, shard_id, seed=seed, prefetch_queue_depth=prefetch_queue)
        self.input = ops.FileReader(file_root=image_dir, file_list=file_list,
                                    random_shuffle=True, num_shards=num_shards, shard_id=shard_id)
        self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB,
                                       device_memory_padding=nvjpeg_padding,
                                       host_memory_padding=nvjpeg_padding)

        self.rrc = ops.RandomResizedCrop(device="gpu", size=spatial_size)
        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT16 if dtype == "half" else types.FLOAT,
                                            output_layout=types.NHWC if channel_last else types.NCHW,
                                            crop=spatial_size,
                                            image_type=types.RGB,
                                            mean=mean,
                                            std=std,
                                            pad_output=pad_output)
        self.coin = ops.CoinFlip(probability=0.5) 
開發者ID:sony,項目名稱:nnabla-examples,代碼行數:24,代碼來源:data.py

示例3: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import FLOAT16 [as 別名]
def __init__(self, batch_size, num_threads, device_id, rec_path, idx_path,
                 shard_id, num_shards, crop_shape, 
                 nvjpeg_padding, prefetch_queue=3,
                 seed=12, resize_shp=None,
                 output_layout=types.NCHW, pad_output=True, dtype='float16',
                 mlperf_print=True):

        super(HybridValPipe, self).__init__(
                batch_size, num_threads, device_id, 
                seed = seed + device_id,
                prefetch_queue_depth = prefetch_queue)

        self.input = ops.MXNetReader(path = [rec_path], index_path=[idx_path],
                                     random_shuffle=False, shard_id=shard_id, num_shards=num_shards)

        self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB,
                                        device_memory_padding = nvjpeg_padding,
                                        host_memory_padding = nvjpeg_padding)

        self.resize = ops.Resize(device = "gpu", resize_shorter=resize_shp) if resize_shp else None

        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                                            output_dtype = types.FLOAT16 if dtype == 'float16' else types.FLOAT,
                                            output_layout = output_layout,
                                            crop = crop_shape,
                                            pad_output = pad_output,
                                            image_type = types.RGB,
                                            mean = _mean_pixel,
                                            std =  _std_pixel)

        if mlperf_print:
            mx_resnet_print(
                    key=mlperf_log.INPUT_MEAN_SUBTRACTION,
                    val=_mean_pixel)
            mx_resnet_print(
                    key=mlperf_log.INPUT_RESIZE_ASPECT_PRESERVING)
            mx_resnet_print(
                    key=mlperf_log.INPUT_CENTRAL_CROP) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:40,代碼來源:dali.py

示例4: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import FLOAT16 [as 別名]
def __init__(self, batch_size, device_id, file_root, annotations_file, num_gpus,
            output_fp16=False, output_nhwc=False, pad_output=False, num_threads=1, seed=15):
        super(COCOPipeline, self).__init__(batch_size=batch_size, device_id=device_id,
                                           num_threads=num_threads, seed = seed)

        try:
            shard_id = torch.distributed.get_rank()
        except RuntimeError:
            shard_id = 0

        self.input = ops.COCOReader(file_root = file_root, annotations_file = annotations_file,
                            shard_id = shard_id, num_shards = num_gpus, ratio=True, ltrb=True, random_shuffle=True)
        self.decode = ops.HostDecoder(device = "cpu", output_type = types.RGB)

        # Augumentation techniques
        self.crop = ops.SSDRandomCrop(device="cpu", num_attempts=1)
        self.twist = ops.ColorTwist(device="gpu")

        self.resize = ops.Resize(device = "gpu", resize_x = 300, resize_y = 300)

        output_dtype = types.FLOAT16 if output_fp16 else types.FLOAT
        output_layout = types.NHWC if output_nhwc else types.NCHW

        self.normalize = ops.CropMirrorNormalize(device="gpu", crop=(300, 300),
                                                 mean=[0.0, 0.0, 0.0],
                                                 std=[255.0, 255.0, 255.0],
                                                 mirror=0,
                                                 output_dtype=output_dtype,
                                                 output_layout=output_layout,
                                                 pad_output=pad_output)

        # Random variables
        self.rng1 = ops.Uniform(range=[0.5, 1.5])
        self.rng2 = ops.Uniform(range=[0.875, 1.125])
        self.rng3 = ops.Uniform(range=[-0.5, 0.5]) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:37,代碼來源:coco_pipeline.py

示例5: __init__

# 需要導入模塊: from nvidia.dali import types [as 別名]
# 或者: from nvidia.dali.types import FLOAT16 [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, size,
                 mean, std, local_rank=0, world_size=1, dali_cpu=False, shuffle=False, fp16=False):

        # As we're recreating the Pipeline at every epoch, the seed must be -1 (random seed)
        super(HybridValPipe, self).__init__(batch_size, num_threads, device_id, seed=-1)

        # Enabling read_ahead slowed down processing ~40%
        # Note: initial_fill is for the shuffle buffer.  As we only want to see every example once, this is set to 1
        self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size, random_shuffle=shuffle, initial_fill=1)
        if dali_cpu:
            decode_device = "cpu"
            self.dali_device = "cpu"
            self.crop = ops.Crop(device="cpu", crop=(crop, crop))

        else:
            decode_device = "mixed"
            self.dali_device = "gpu"

            output_dtype = types.FLOAT
            if fp16:
                output_dtype = types.FLOAT16

            self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                                output_dtype=output_dtype,
                                                output_layout=types.NCHW,
                                                crop=(crop, crop),
                                                image_type=types.RGB,
                                                mean=mean,
                                                std=std)

        self.decode = ops.ImageDecoder(device=decode_device, output_type=types.RGB)

        # Resize to desired size.  To match torchvision dataloader, use triangular interpolation
        self.res = ops.Resize(device=self.dali_device, resize_shorter=size, interp_type=types.INTERP_TRIANGULAR) 
開發者ID:yaysummeriscoming,項目名稱:DALI_pytorch_demo,代碼行數:36,代碼來源:dali.py


注:本文中的nvidia.dali.types.FLOAT16屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。