當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.PINF屬性代碼示例

本文整理匯總了Python中numpy.PINF屬性的典型用法代碼示例。如果您正苦於以下問題:Python numpy.PINF屬性的具體用法?Python numpy.PINF怎麽用?Python numpy.PINF使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在numpy的用法示例。


在下文中一共展示了numpy.PINF屬性的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: ComputeEnabledAABB

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import PINF [as 別名]
def ComputeEnabledAABB(kinbody):
    """
    Returns the AABB of the enabled links of a KinBody.

    @param kinbody: an OpenRAVE KinBody
    @returns: AABB of the enabled links of the KinBody
    """
    from numpy import NINF, PINF
    from openravepy import AABB

    min_corner = numpy.array([PINF] * 3)
    max_corner = numpy.array([NINF] * 3)

    for link in kinbody.GetLinks():
        if link.IsEnabled():
            link_aabb = link.ComputeAABB()
            center = link_aabb.pos()
            half_extents = link_aabb.extents()
            min_corner = numpy.minimum(center - half_extents, min_corner)
            max_corner = numpy.maximum(center + half_extents, max_corner)

    center = (min_corner + max_corner) / 2.
    half_extents = (max_corner - min_corner) / 2.
    return AABB(center, half_extents) 
開發者ID:personalrobotics,項目名稱:prpy,代碼行數:26,代碼來源:util.py

示例2: test_constants

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import PINF [as 別名]
def test_constants():
    assert chainerx.Inf is numpy.Inf
    assert chainerx.Infinity is numpy.Infinity
    assert chainerx.NAN is numpy.NAN
    assert chainerx.NINF is numpy.NINF
    assert chainerx.NZERO is numpy.NZERO
    assert chainerx.NaN is numpy.NaN
    assert chainerx.PINF is numpy.PINF
    assert chainerx.PZERO is numpy.PZERO
    assert chainerx.e is numpy.e
    assert chainerx.euler_gamma is numpy.euler_gamma
    assert chainerx.inf is numpy.inf
    assert chainerx.infty is numpy.infty
    assert chainerx.nan is numpy.nan
    assert chainerx.newaxis is numpy.newaxis
    assert chainerx.pi is numpy.pi 
開發者ID:chainer,項目名稱:chainer,代碼行數:18,代碼來源:test_constants.py

示例3: normalize

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import PINF [as 別名]
def normalize(v):
    if isinstance(v, numpy.bool_):
        return bool(v)
    elif isinstance(v, numpy.ndarray):
        return [normalize(item) for item in v]
    elif v == numpy.NaN:
        return "NaN"
    elif v == numpy.NINF:
        return "-Infinity"
    elif v == numpy.PINF:
        return "Infinity"
    elif isinstance(v, numpy.float):
        return float(v)
    elif isinstance(v, tuple):
        return list(v)
    else:
        return v 
開發者ID:wikimedia,項目名稱:revscoring,代碼行數:19,代碼來源:util.py

示例4: _get_proposal_function

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import PINF [as 別名]
def _get_proposal_function(self, model, space):

        # Define proposal function for multi-fidelity
        ei = ExpectedImprovement(model)

        def proposal_func(x):
            x_ = x[None, :]
            # Map to highest fidelity
            idx = np.ones((x_.shape[0], 1)) * self.high_fidelity

            x_ = np.insert(x_, self.target_fidelity_index, idx, axis=1)

            if space.check_points_in_domain(x_):
                val = np.log(np.clip(ei.evaluate(x_)[0], 0., np.PINF))
                if np.any(np.isnan(val)):
                    return np.array([np.NINF])
                else:
                    return val
            else:
                return np.array([np.NINF])

        return proposal_func 
開發者ID:amzn,項目名稱:emukit,代碼行數:24,代碼來源:continuous_fidelity_entropy_search.py

示例5: _get_proposal_function

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import PINF [as 別名]
def _get_proposal_function(self, model, space):

        # Define proposal function for multi-fidelity
        ei = ExpectedImprovement(model)

        def proposal_func(x):
            x_ = x[None, :]

            # Add information source parameter into array
            idx = np.ones((x_.shape[0], 1)) * self.target_information_source_index
            x_ = np.insert(x_, self.source_idx, idx, axis=1)

            if space.check_points_in_domain(x_):
                val = np.log(np.clip(ei.evaluate(x_)[0], 0., np.PINF))
                if np.any(np.isnan(val)):
                    return np.array([np.NINF])
                else:
                    return val
            else:
                return np.array([np.NINF])

        return proposal_func 
開發者ID:amzn,項目名稱:emukit,代碼行數:24,代碼來源:entropy_search.py

示例6: get_ground_clearance

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import PINF [as 別名]
def get_ground_clearance(data):
    """
    Extracts the minimum value of for_pos[2] and returns that value and the
    timestep it happened at.
    """
    structure = data.structure
    min_clear = np.PINF
    ts_min_clear = None
    for ts, tstep in enumerate(structure.timestep_info):
        try:
            tstep.mb_dict['constraint_00']
            continue
        except KeyError:
            pass
        if tstep.for_pos[2] < min_clear:
            min_clear = tstep.for_pos[2]
            ts_min_clear = ts
    return min_clear, ts_min_clear 
開發者ID:ImperialCollegeLondon,項目名稱:sharpy,代碼行數:20,代碼來源:optimiser.py

示例7: init

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import PINF [as 別名]
def init(self, **options):
        self.__dict__.update(options)
        self.lower = asarray(self.lower)
        self.lower = where(self.lower == numpy.NINF, -_double_max, self.lower)
        self.upper = asarray(self.upper)
        self.upper = where(self.upper == numpy.PINF, _double_max, self.upper)
        self.k = 0
        self.accepted = 0
        self.feval = 0
        self.tests = 0 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:12,代碼來源:anneal.py

示例8: _get_weight_map

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import PINF [as 別名]
def _get_weight_map(self, ann, inst_list):
        if len(inst_list) <= 1: # 1 instance only
            return np.zeros(ann.shape[:2])
        stacked_inst_bgd_dst = np.zeros(ann.shape[:2] +(len(inst_list),))

        for idx, inst_id in enumerate(inst_list):
            inst_bgd_map = np.array(ann != inst_id , np.uint8)
            inst_bgd_dst = distance_transform_edt(inst_bgd_map)
            stacked_inst_bgd_dst[...,idx] = inst_bgd_dst

        near1_dst = np.amin(stacked_inst_bgd_dst, axis=2)
        near2_dst = np.expand_dims(near1_dst ,axis=2)
        near2_dst = stacked_inst_bgd_dst - near2_dst
        near2_dst[near2_dst == 0] = np.PINF # very large
        near2_dst = np.amin(near2_dst, axis=2)
        near2_dst[ann > 0] = 0 # the instances
        near2_dst = near2_dst + near1_dst
        # to fix pixel where near1 == near2
        near2_eve = np.expand_dims(near1_dst ,axis=2)
        # to avoide the warning of a / 0
        near2_eve = (1.0 + stacked_inst_bgd_dst) / (1.0 + near2_eve)
        near2_eve[near2_eve != 1] = 0
        near2_eve = np.sum(near2_eve, axis=2)
        near2_dst[near2_eve > 1] = near1_dst[near2_eve > 1]
        #
        pix_dst = near1_dst + near2_dst
        pen_map = pix_dst / self.sigma
        pen_map = self.w0 * np.exp(- pen_map**2 / 2)
        pen_map[ann > 0] = 0 # inner instances zero
        return pen_map 
開發者ID:vqdang,項目名稱:hover_net,代碼行數:32,代碼來源:augs.py

示例9: test_normalize_json

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import PINF [as 別名]
def test_normalize_json():
    doc = {"foo": {numpy.bool_(True): "value"},
           "what": numpy.bool_(False),
           "this": numpy.PINF}
    normalized_doc = normalize_json(doc)
    assert isinstance(normalized_doc['what'], bool)
    assert isinstance(list(normalized_doc['foo'].keys())[0], bool)
    assert normalized_doc['this'] == "Infinity" 
開發者ID:wikimedia,項目名稱:revscoring,代碼行數:10,代碼來源:test_util.py

示例10: best_h

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import PINF [as 別名]
def best_h(self, lambda_vec):
        """Solve the best-response problem.

        Returns the classifier that solves the best-response problem for
        the vector of Lagrange multipliers `lambda_vec`.
        """
        classifier = self._call_oracle(lambda_vec)
        def h(X): return classifier.predict(X)
        h_error = self.obj.gamma(h)[0]
        h_gamma = self.constraints.gamma(h)
        h_value = h_error + h_gamma.dot(lambda_vec)

        if not self.hs.empty:
            values = self.errors + self.gammas.transpose().dot(lambda_vec)
            best_idx = values.idxmin()
            best_value = values[best_idx]
        else:
            best_idx = -1
            best_value = np.PINF

        if h_value < best_value - _PRECISION:
            logger.debug("%sbest_h: val improvement %f", _LINE, best_value - h_value)
            h_idx = len(self.hs)
            self.hs.at[h_idx] = h
            self.predictors.at[h_idx] = classifier
            self.errors.at[h_idx] = h_error
            self.gammas[h_idx] = h_gamma
            self.lambdas[h_idx] = lambda_vec.copy()
            best_idx = h_idx

        return self.hs[best_idx], best_idx 
開發者ID:fairlearn,項目名稱:fairlearn,代碼行數:33,代碼來源:_lagrangian.py

示例11: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import PINF [as 別名]
def __init__(self,
                 position,
                 nzis=None,
                 shape=None,
                 hitpoints=np.PINF,
                 is_entity=True,
                 color=(128, 128, 128),
                 visible=True,
                 indirect_collision_effects=True):

        self._position = np.array(position)
        self.hitpoints = hitpoints
        self.is_entity = is_entity
        self.color = color
        self.visible = visible
        self.is_rectangular = True
        self.indirect_collision_effects = indirect_collision_effects

        assert self.hitpoints > 0
        assert ((nzis is None and shape is not None) or
                (nzis is not None and shape is None))

        # Set non-zero indices of the object mask's
        if nzis is None:
            self._nzis = shape_to_nzis(shape)
        else:
            self._nzis = np.array(nzis)

        if is_entity:
            self.entity_id = BreakoutObject.unique_entity_id
            BreakoutObject.unique_entity_id += MAX_NZIS_PER_ENTITY
            assert len(self._nzis) <= MAX_NZIS_PER_ENTITY
        else:
            self.entity_id = None

        self.object_id = BreakoutObject.unique_object_id
        BreakoutObject.unique_object_id += 1
        BreakoutObject.register_color(self.color)

        # Sets up slots for memoization
        self.reset_cache() 
開發者ID:vicariousinc,項目名稱:schema-games,代碼行數:43,代碼來源:objects.py

示例12: play_game

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import PINF [as 別名]
def play_game(environment_class,
              cheat_mode=DEFAULT_CHEAT_MODE,
              debug=DEFAULT_DEBUG,
              fps=30):
    """
    Interactively play an environment.

    Parameters
    ----------
    environment_class : type
        A subclass of schema_games.breakout.core.BreakoutEngine that represents
        a game. A convenient list is included in schema_games.breakout.games.
    cheat_mode : bool
        If True, player has an infinite amount of lives.
    debug : bool
        If True, print debugging messages and perform additional sanity checks.
    fps : int
        Frame rate per second at which to display the game.
    """
    print blue("-" * 80)
    print blue("Starting interactive game. "
               "Press <ESC> at any moment to terminate.")
    print blue("-" * 80)

    env_args = {
        'return_state_as_image': True,
        'debugging': debug,
    }

    if cheat_mode:
        env_args['num_lives'] = np.PINF

    env = environment_class(**env_args)
    keys_to_action = defaultdict(lambda: env.NOOP, {
            (pygame.K_LEFT,): env.LEFT,
            (pygame.K_RIGHT,): env.RIGHT,
        })

    play(env, fps=fps, keys_to_action=keys_to_action, zoom=ZOOM_FACTOR) 
開發者ID:vicariousinc,項目名稱:schema-games,代碼行數:41,代碼來源:play.py

示例13: PlanToEndEffectorPose

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import PINF [as 別名]
def PlanToEndEffectorPose(self, robot, goal_pose, timelimit=5.0,
                              pose_error_tol=0.01,
                              integration_interval=10.0,
                              **kw_args):
        """
        Plan to an end effector pose by following a geodesic loss function
        in SE(3) via an optimized Jacobian.

        @param robot
        @param goal_pose desired end-effector pose
        @param timelimit time limit before giving up
        @param pose_error_tol in meters
        @param integration_interval The time interval to integrate over
        @return traj
        """
        manip = robot.GetActiveManipulator()

        def vf_geodesic():
            """
            Define a joint-space vector field, that moves along the
            geodesic (shortest path) from the start pose to the goal pose.
            """
            twist = util.GeodesicTwist(manip.GetEndEffectorTransform(),
                                       goal_pose)
            dqout, tout = util.ComputeJointVelocityFromTwist(
                robot, twist, joint_velocity_limits=numpy.PINF)

            # Go as fast as possible
            vlimits = robot.GetDOFVelocityLimits(robot.GetActiveDOFIndices())
            return min(abs(vlimits[i] / dqout[i])
                       if dqout[i] != 0. else 1.
                       for i in xrange(vlimits.shape[0])) * dqout

        def CloseEnough():
            """
            The termination condition.
            At each integration step, the geodesic error between the
            start and goal poses is compared. If within threshold,
            the integration will terminate.
            """
            pose_error = util.GetGeodesicDistanceBetweenTransforms(
                manip.GetEndEffectorTransform(), goal_pose)
            if pose_error < pose_error_tol:
                return Status.TERMINATE
            return Status.CONTINUE

        traj = self.FollowVectorField(robot, vf_geodesic, CloseEnough,
                                      integration_interval,
                                      timelimit,
                                      **kw_args)

        # Flag this trajectory as unconstrained. This overwrites the
        # constrained flag set by FollowVectorField.
        util.SetTrajectoryTags(traj, {Tags.CONSTRAINED: False}, append=True)
        return traj 
開發者ID:personalrobotics,項目名稱:prpy,代碼行數:57,代碼來源:vectorfield.py


注:本文中的numpy.PINF屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。