本文整理匯總了Python中nltk.corpus.wordnet.VERB屬性的典型用法代碼示例。如果您正苦於以下問題:Python wordnet.VERB屬性的具體用法?Python wordnet.VERB怎麽用?Python wordnet.VERB使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類nltk.corpus.wordnet
的用法示例。
在下文中一共展示了wordnet.VERB屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: pos_tag_text
# 需要導入模塊: from nltk.corpus import wordnet [as 別名]
# 或者: from nltk.corpus.wordnet import VERB [as 別名]
def pos_tag_text(text):
def penn_to_wn_tags(pos_tag):
if pos_tag.startswith('J'):
return wn.ADJ
elif pos_tag.startswith('V'):
return wn.VERB
elif pos_tag.startswith('N'):
return wn.NOUN
elif pos_tag.startswith('R'):
return wn.ADV
else:
return None
tagged_text = tag(text)
tagged_lower_text = [(word.lower(), penn_to_wn_tags(pos_tag))
for word, pos_tag in
tagged_text]
return tagged_lower_text
# lemmatize text based on POS tags
示例2: pos_tag_convert_penn_to_wn
# 需要導入模塊: from nltk.corpus import wordnet [as 別名]
# 或者: from nltk.corpus.wordnet import VERB [as 別名]
def pos_tag_convert_penn_to_wn(tag):
"""
Convert POS tag from Penn tagset to WordNet tagset.
:param tag: a tag from Penn tagset
:return: a tag from WordNet tagset or None if no corresponding tag could be found
"""
from nltk.corpus import wordnet as wn
if tag in ['JJ', 'JJR', 'JJS']:
return wn.ADJ
elif tag in ['RB', 'RBR', 'RBS']:
return wn.ADV
elif tag in ['NN', 'NNS', 'NNP', 'NNPS']:
return wn.NOUN
elif tag in ['VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ']:
return wn.VERB
return None
示例3: get_wordnet_pos
# 需要導入模塊: from nltk.corpus import wordnet [as 別名]
# 或者: from nltk.corpus.wordnet import VERB [as 別名]
def get_wordnet_pos(self,treebank_tag):
"""
return WORDNET POS compliance to WORDENT lemmatization (a,n,r,v)
"""
if treebank_tag.startswith('J'):
return wordnet.ADJ
elif treebank_tag.startswith('V'):
return wordnet.VERB
elif treebank_tag.startswith('N'):
return wordnet.NOUN
elif treebank_tag.startswith('R'):
return wordnet.ADV
else:
return wordnet.NOUN
示例4: _pos_tuples
# 需要導入模塊: from nltk.corpus import wordnet [as 別名]
# 或者: from nltk.corpus.wordnet import VERB [as 別名]
def _pos_tuples():
return [
(wn.NOUN,'N','noun'),
(wn.VERB,'V','verb'),
(wn.ADJ,'J','adj'),
(wn.ADV,'R','adv')]
示例5: get_wordnet_pos
# 需要導入模塊: from nltk.corpus import wordnet [as 別名]
# 或者: from nltk.corpus.wordnet import VERB [as 別名]
def get_wordnet_pos(treebank_tag):
if treebank_tag.startswith('J'):
return wordnet.ADJ
elif treebank_tag.startswith('V'):
return wordnet.VERB
elif treebank_tag.startswith('N'):
return wordnet.NOUN
elif treebank_tag.startswith('R'):
return wordnet.ADV
else:
return None
示例6: wup_similarity
# 需要導入模塊: from nltk.corpus import wordnet [as 別名]
# 或者: from nltk.corpus.wordnet import VERB [as 別名]
def wup_similarity(tagx, tagy):
scores = []
for pos in [wn.NOUN, wn.VERB, wn.ADJ, wn.ADJ_SAT, wn.ADV]:
try:
synsetx = wn.synset('%s.%s.01' % (tagx,pos))
synsety = wn.synset('%s.%s.01' % (tagy,pos))
score = synsetx.wup_similarity(synsety)
if score is None:
score = 0
except Exception, e:
score = 0
scores.append(score)
示例7: test_pos_tag_convert_penn_to_wn
# 需要導入模塊: from nltk.corpus import wordnet [as 別名]
# 或者: from nltk.corpus.wordnet import VERB [as 別名]
def test_pos_tag_convert_penn_to_wn():
assert pos_tag_convert_penn_to_wn('JJ') == wn.ADJ
assert pos_tag_convert_penn_to_wn('RB') == wn.ADV
assert pos_tag_convert_penn_to_wn('NN') == wn.NOUN
assert pos_tag_convert_penn_to_wn('VB') == wn.VERB
for tag in ('', 'invalid', None):
assert pos_tag_convert_penn_to_wn(tag) is None
示例8: __get_wordnet_pos
# 需要導入模塊: from nltk.corpus import wordnet [as 別名]
# 或者: from nltk.corpus.wordnet import VERB [as 別名]
def __get_wordnet_pos(self, treebank_tag):
if treebank_tag.startswith("J"):
return wordnet.ADJ
elif treebank_tag.startswith("V"):
return wordnet.VERB
elif treebank_tag.startswith("N"):
return wordnet.NOUN
elif treebank_tag.startswith("R"):
return wordnet.ADV
else:
return ""
示例9: tagwn
# 需要導入模塊: from nltk.corpus import wordnet [as 別名]
# 或者: from nltk.corpus.wordnet import VERB [as 別名]
def tagwn(self, tag):
"""
Returns the WordNet tag from the Penn Treebank tag.
"""
return {
'N': wn.NOUN,
'V': wn.VERB,
'R': wn.ADV,
'J': wn.ADJ
}.get(tag[0], wn.NOUN)
示例10: get_wordnet_pos
# 需要導入模塊: from nltk.corpus import wordnet [as 別名]
# 或者: from nltk.corpus.wordnet import VERB [as 別名]
def get_wordnet_pos(treebank_tag):
""" Converts a Penn Tree-Bank part of speech tag into a corresponding WordNet-friendly tag.
Borrowed from: http://stackoverflow.com/questions/15586721/wordnet-lemmatization-and-pos-tagging-in-python. """
if treebank_tag.startswith('J') or treebank_tag.startswith('A'):
return wordnet.ADJ
elif treebank_tag.startswith('V'):
return wordnet.VERB
elif treebank_tag.startswith('N'):
return wordnet.NOUN
elif treebank_tag.startswith('R'):
return wordnet.ADV
else:
return 'OTHER'
示例11: convert_to_wn_pos
# 需要導入模塊: from nltk.corpus import wordnet [as 別名]
# 或者: from nltk.corpus.wordnet import VERB [as 別名]
def convert_to_wn_pos(pos):
if pos.startswith("J"):
return wn.ADJ
elif pos.startswith("V"):
return wn.VERB
elif pos.startswith("N"):
return wn.NOUN
elif pos.startswith("R"):
return wn.ADV
else:
return ""
示例12: get_word_net_pos
# 需要導入模塊: from nltk.corpus import wordnet [as 別名]
# 或者: from nltk.corpus.wordnet import VERB [as 別名]
def get_word_net_pos(treebank_tag):
if treebank_tag.startswith('J'):
return wordnet.ADJ
elif treebank_tag.startswith('V'):
return wordnet.VERB
elif treebank_tag.startswith('N'):
return wordnet.NOUN
elif treebank_tag.startswith('R'):
return wordnet.ADV
else:
return None
示例13: lemmatize
# 需要導入模塊: from nltk.corpus import wordnet [as 別名]
# 或者: from nltk.corpus.wordnet import VERB [as 別名]
def lemmatize(self, token, pos_tag):
tag = {
'N': wn.NOUN,
'V': wn.VERB,
'R': wn.ADV,
'J': wn.ADJ
}.get(pos_tag[0], wn.NOUN)
return self.lemmatizer.lemmatize(token, tag)
示例14: wnpos
# 需要導入模塊: from nltk.corpus import wordnet [as 別名]
# 或者: from nltk.corpus.wordnet import VERB [as 別名]
def wnpos(tag):
# Return the WordNet POS tag from the Penn Treebank tag
return {
'N': wn.NOUN,
'V': wn.VERB,
'R': wn.ADV,
'J': wn.ADJ
}.get(tag[0], wn.NOUN)
示例15: _sentence_to_mongo
# 需要導入模塊: from nltk.corpus import wordnet [as 別名]
# 或者: from nltk.corpus.wordnet import VERB [as 別名]
def _sentence_to_mongo(typ, items):
import nltk
from nltk.corpus import wordnet
def wordnet_pos(tag):
if tag.startswith('J'):
return wordnet.ADJ
elif tag.startswith('V'):
return wordnet.VERB
elif tag.startswith('N'):
return wordnet.NOUN
elif tag.startswith('R'):
return wordnet.ADV
else:
return wordnet.NOUN
# nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('stopwords')
nltk.download('wordnet')
nltk.download('punkt')
stop_words = set(nltk.corpus.stopwords.words('english'))
stemmer = nltk.stem.WordNetLemmatizer()
sentences = []
for trans in items:
eng, chn = trans.getsource(), trans.gettarget()
tokens = nltk.word_tokenize(eng)
pos_tag = [pos[1] for pos in nltk.pos_tag(tokens)]
roots = [stemmer.lemmatize(word, wordnet_pos(pos_tag[idx])) for idx, word in enumerate(tokens)]
cleanword = [token for token in roots if token.isalpha() and token not in stop_words and len(token) >= 3]
# remove duplicates
clean_word = list(dict.fromkeys(cleanword))
if len(clean_word) > 0:
score = Word.search_words(*clean_word).sum('star') / len(clean_word)
else:
score = -1
sentence = Sentence(eng=eng, chn=chn, words=tokens, pos_tag=pos_tag, roots=roots, score=score, typ=typ)
sentences.append(sentence)
if len(sentences) > 50:
Sentence.objects.insert(sentences)
sentences = []