本文整理匯總了Python中mpi4py.MPI.SUM屬性的典型用法代碼示例。如果您正苦於以下問題:Python MPI.SUM屬性的具體用法?Python MPI.SUM怎麽用?Python MPI.SUM使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類mpi4py.MPI
的用法示例。
在下文中一共展示了MPI.SUM屬性的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: adapt_param_noise
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import SUM [as 別名]
def adapt_param_noise(self):
if self.param_noise is None:
return 0.
# Perturb a separate copy of the policy to adjust the scale for the next "real" perturbation.
batch = self.memory.sample(batch_size=self.batch_size)
self.sess.run(self.perturb_adaptive_policy_ops, feed_dict={
self.param_noise_stddev: self.param_noise.current_stddev,
})
distance = self.sess.run(self.adaptive_policy_distance, feed_dict={
self.obs0: batch['obs0'],
self.param_noise_stddev: self.param_noise.current_stddev,
})
mean_distance = MPI.COMM_WORLD.allreduce(distance, op=MPI.SUM) / MPI.COMM_WORLD.Get_size()
self.param_noise.adapt(mean_distance)
return mean_distance
示例2: compute_gradients
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import SUM [as 別名]
def compute_gradients(self, loss, var_list, **kwargs):
grads_and_vars = tf.train.AdamOptimizer.compute_gradients(self, loss, var_list, **kwargs)
grads_and_vars = [(g, v) for g, v in grads_and_vars if g is not None]
flat_grad = tf.concat([tf.reshape(g, (-1,)) for g, v in grads_and_vars], axis=0)
shapes = [v.shape.as_list() for g, v in grads_and_vars]
sizes = [int(np.prod(s)) for s in shapes]
num_tasks = self.comm.Get_size()
buf = np.zeros(sum(sizes), np.float32)
def _collect_grads(flat_grad):
self.comm.Allreduce(flat_grad, buf, op=MPI.SUM)
np.divide(buf, float(num_tasks), out=buf)
return buf
avg_flat_grad = tf.py_func(_collect_grads, [flat_grad], tf.float32)
avg_flat_grad.set_shape(flat_grad.shape)
avg_grads = tf.split(avg_flat_grad, sizes, axis=0)
avg_grads_and_vars = [(tf.reshape(g, v.shape), v)
for g, (_, v) in zip(avg_grads, grads_and_vars)]
return avg_grads_and_vars
示例3: compute_gradients
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import SUM [as 別名]
def compute_gradients(self, loss, var_list, **kwargs):
"""
Same as normal compute_gradients, except average grads over processes.
"""
grads_and_vars = super().compute_gradients(loss, var_list, **kwargs)
grads_and_vars = [(g, v) for g, v in grads_and_vars if g is not None]
flat_grad = flat_concat([g for g, v in grads_and_vars])
shapes = [v.shape.as_list() for g, v in grads_and_vars]
sizes = [int(np.prod(s)) for s in shapes]
num_tasks = self.comm.Get_size()
buf = np.zeros(flat_grad.shape, np.float32)
def _collect_grads(flat_grad):
self.comm.Allreduce(flat_grad, buf, op=MPI.SUM)
np.divide(buf, float(num_tasks), out=buf)
return buf
avg_flat_grad = tf.py_func(_collect_grads, [flat_grad], tf.float32)
avg_flat_grad.set_shape(flat_grad.shape)
avg_grads = tf.split(avg_flat_grad, sizes, axis=0)
avg_grads_and_vars = [(tf.reshape(g, v.shape), v)
for g, (_, v) in zip(avg_grads, grads_and_vars)]
return avg_grads_and_vars
示例4: mpi_mean
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import SUM [as 別名]
def mpi_mean(arr, axis=0, comm=None, keepdims=False):
"""
calculates the mean of an array, using MPI
:param arr: (np.ndarray)
:param axis: (int or tuple or list) the axis to run the means over
:param comm: (MPI Communicators) if None, MPI.COMM_WORLD
:param keepdims: (bool) keep the other dimensions intact
:return: (np.ndarray or Number) the result of the sum
"""
arr = np.asarray(arr)
assert arr.ndim > 0
if comm is None:
comm = MPI.COMM_WORLD
xsum = arr.sum(axis=axis, keepdims=keepdims)
size = xsum.size
localsum = np.zeros(size + 1, arr.dtype)
localsum[:size] = xsum.ravel()
localsum[size] = arr.shape[axis]
globalsum = np.zeros_like(localsum)
comm.Allreduce(localsum, globalsum, op=MPI.SUM)
return globalsum[:size].reshape(xsum.shape) / globalsum[size], globalsum[size]
示例5: _adapt_param_noise
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import SUM [as 別名]
def _adapt_param_noise(self):
"""
calculate the adaptation for the parameter noise
:return: (float) the mean distance for the parameter noise
"""
if self.param_noise is None:
return 0.
# Perturb a separate copy of the policy to adjust the scale for the next "real" perturbation.
obs, *_ = self.replay_buffer.sample(batch_size=self.batch_size, env=self._vec_normalize_env)
self.sess.run(self.perturb_adaptive_policy_ops, feed_dict={
self.param_noise_stddev: self.param_noise.current_stddev,
})
distance = self.sess.run(self.adaptive_policy_distance, feed_dict={
self.obs_adapt_noise: obs, self.obs_train: obs,
self.param_noise_stddev: self.param_noise.current_stddev,
})
mean_distance = MPI.COMM_WORLD.allreduce(distance, op=MPI.SUM) / MPI.COMM_WORLD.Get_size()
self.param_noise.adapt(mean_distance)
return mean_distance
示例6: mpi_moments
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import SUM [as 別名]
def mpi_moments(x, axis=0):
x = np.asarray(x, dtype='float64')
newshape = list(x.shape)
newshape.pop(axis)
n = np.prod(newshape,dtype=int)
totalvec = np.zeros(n*2+1, 'float64')
addvec = np.concatenate([x.sum(axis=axis).ravel(),
np.square(x).sum(axis=axis).ravel(),
np.array([x.shape[axis]],dtype='float64')])
MPI.COMM_WORLD.Allreduce(addvec, totalvec, op=MPI.SUM)
sum = totalvec[:n]
sumsq = totalvec[n:2*n]
count = totalvec[2*n]
if count == 0:
mean = np.empty(newshape); mean[:] = np.nan
std = np.empty(newshape); std[:] = np.nan
else:
mean = sum/count
std = np.sqrt(np.maximum(sumsq/count - np.square(mean),0))
return mean, std, count
示例7: update
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import SUM [as 別名]
def update(self, localg, stepsize):
if self.t % 100 == 0:
self.check_synced()
localg = localg.astype('float32')
if self.comm is not None:
globalg = np.zeros_like(localg)
self.comm.Allreduce(localg, globalg, op=MPI.SUM)
if self.scale_grad_by_procs:
globalg /= self.comm.Get_size()
else:
globalg = np.copy(localg)
self.t += 1
a = stepsize * np.sqrt(1 - self.beta2**self.t)/(1 - self.beta1**self.t)
self.m = self.beta1 * self.m + (1 - self.beta1) * globalg
self.v = self.beta2 * self.v + (1 - self.beta2) * (globalg * globalg)
step = (- a) * self.m / (np.sqrt(self.v) + self.epsilon)
self.setfromflat(self.getflat() + step)
示例8: _mpi_average
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import SUM [as 別名]
def _mpi_average(self, x):
buf = np.zeros_like(x)
MPI.COMM_WORLD.Allreduce(x, buf, op=MPI.SUM)
buf /= MPI.COMM_WORLD.Get_size()
return buf
示例9: mpi_mean
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import SUM [as 別名]
def mpi_mean(x, axis=0, comm=None, keepdims=False):
x = np.asarray(x)
assert x.ndim > 0
if comm is None: comm = MPI.COMM_WORLD
xsum = x.sum(axis=axis, keepdims=keepdims)
n = xsum.size
localsum = np.zeros(n+1, x.dtype)
localsum[:n] = xsum.ravel()
localsum[n] = x.shape[axis]
globalsum = np.zeros_like(localsum)
comm.Allreduce(localsum, globalsum, op=MPI.SUM)
return globalsum[:n].reshape(xsum.shape) / globalsum[n], globalsum[n]
示例10: update
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import SUM [as 別名]
def update(self, x):
x = x.astype('float64')
n = int(np.prod(self.shape))
totalvec = np.zeros(n*2+1, 'float64')
addvec = np.concatenate([x.sum(axis=0).ravel(), np.square(x).sum(axis=0).ravel(), np.array([len(x)],dtype='float64')])
MPI.COMM_WORLD.Allreduce(addvec, totalvec, op=MPI.SUM)
self.incfiltparams(totalvec[0:n].reshape(self.shape), totalvec[n:2*n].reshape(self.shape), totalvec[2*n])
示例11: update
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import SUM [as 別名]
def update(self, localg, stepsize):
if self.t % 100 == 0:
self.check_synced()
localg = localg.astype('float32')
globalg = np.zeros_like(localg)
self.comm.Allreduce(localg, globalg, op=MPI.SUM)
if self.scale_grad_by_procs:
globalg /= self.comm.Get_size()
self.t += 1
a = stepsize * np.sqrt(1 - self.beta2**self.t)/(1 - self.beta1**self.t)
self.m = self.beta1 * self.m + (1 - self.beta1) * globalg
self.v = self.beta2 * self.v + (1 - self.beta2) * (globalg * globalg)
step = (- a) * self.m / (np.sqrt(self.v) + self.epsilon)
self.setfromflat(self.getflat() + step)
示例12: safeAllreduceInPlace
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import SUM [as 別名]
def safeAllreduceInPlace(comm, in_array):
shape = in_array.shape
length = len(shape)
# just use 16 for blocksize, size of complex(double)
chunk_size = get_max_blocksize_from_mem(list(shape),16.,MEM_SIZE,priority_list=numpy.arange(length)[::-1])
task_list = generate_task_list(chunk_size,shape)
for block in task_list:
which_slice = [slice(*x) for x in block]
tmp = in_array[tuple(which_slice)].copy()
comm.Allreduce(MPI.IN_PLACE, tmp, op=MPI.SUM)
in_array[tuple(which_slice)] = tmp
示例13: reduce
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import SUM [as 別名]
def reduce(sendbuf, op=MPI.SUM, root=0):
sendbuf = numpy.asarray(sendbuf, order='C')
shape, mpi_dtype = comm.bcast((sendbuf.shape, sendbuf.dtype.char))
_assert(sendbuf.shape == shape and sendbuf.dtype.char == mpi_dtype)
recvbuf = numpy.zeros_like(sendbuf)
comm.Reduce(sendbuf, recvbuf, op, root)
if rank == root:
return recvbuf
else:
return sendbuf