本文整理匯總了Python中mpi4py.MPI.MIN屬性的典型用法代碼示例。如果您正苦於以下問題:Python MPI.MIN屬性的具體用法?Python MPI.MIN怎麽用?Python MPI.MIN使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類mpi4py.MPI
的用法示例。
在下文中一共展示了MPI.MIN屬性的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _get_minmax_coordinates_mesh
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import MIN [as 別名]
def _get_minmax_coordinates_mesh(self, axis=0):
""" Return the minimum and maximum coordinates along axis
parameter:
----------
axis:
axis
returns:
-------
tuple: minV, maxV
"""
maxVal = np.zeros((1))
minVal = np.zeros((1))
maxVal[0] = self.Model.mesh.data[:, axis].max()
minVal[0] = self.Model.mesh.data[:, axis].min()
comm.Barrier()
comm.Allreduce(_MPI.IN_PLACE, maxVal, op=_MPI.MAX)
comm.Allreduce(_MPI.IN_PLACE, minVal, op=_MPI.MIN)
comm.Barrier()
return minVal, maxVal
示例2: mpi_statistics_scalar
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import MIN [as 別名]
def mpi_statistics_scalar(x, with_min_and_max=False):
"""
Get mean/std and optional min/max of scalar x across MPI processes.
Args:
x: An array containing samples of the scalar to produce statistics
for.
with_min_and_max (bool): If true, return min and max of x in
addition to mean and std.
"""
x = np.array(x, dtype=np.float32)
global_sum, global_n = mpi_sum([np.sum(x), len(x)])
mean = global_sum / global_n
global_sum_sq = mpi_sum(np.sum((x - mean)**2))
std = np.sqrt(global_sum_sq / global_n) # compute global std
if with_min_and_max:
global_min = mpi_op(np.min(x) if len(x) > 0 else np.inf, op=MPI.MIN)
global_max = mpi_op(np.max(x) if len(x) > 0 else -np.inf, op=MPI.MAX)
return mean, std, global_min, global_max
return mean, std
示例3: mpi_statistics_scalar
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import MIN [as 別名]
def mpi_statistics_scalar(x, with_min_and_max=False):
"""
Get mean/std and optional min/max of scalar x across MPI processes.
Args:
x: An array containing samples of the scalar to produce statistics
for.
with_min_and_max (bool): If true, return min and max of x in
addition to mean and std.
"""
x = np.array(x, dtype=np.float32)
global_sum, global_n = mpi_sum([np.sum(x), len(x)])
mean = global_sum / global_n
global_sum_sq = mpi_sum(np.sum((x - mean) ** 2))
std = np.sqrt(global_sum_sq / global_n) # compute global std
if with_min_and_max:
global_min = mpi_op(np.min(x) if len(x) > 0 else np.inf, op=MPI.MIN)
global_max = mpi_op(np.max(x) if len(x) > 0 else -np.inf, op=MPI.MAX)
return mean, std, global_min, global_max
return mean, std
示例4: _get_minmax_velocity_wall
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import MIN [as 別名]
def _get_minmax_velocity_wall(self, wall, axis=0):
""" Return the minimum and maximum velocity component on the wall
parameters:
-----------
wall: (indexSet)
The wall.
axis:
axis (velocity component).
"""
# Initialise value to max and min sys values
maxV = np.ones((1)) * sys.float_info.min
minV = np.ones((1)) * sys.float_info.max
# if local domain has wall, get velocities
if wall.data.size > 0:
velocities = self.Model.velocityField.data[wall.data, axis]
# get local min and max
maxV[0] = velocities.max()
minV[0] = velocities.min()
# reduce operation
comm.Barrier()
comm.Allreduce(_MPI.IN_PLACE, maxV, op=_MPI.MAX)
comm.Allreduce(_MPI.IN_PLACE, minV, op=_MPI.MIN)
comm.Barrier()
return minV, maxV
示例5: __init__
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import MIN [as 別名]
def __init__(self, source, fsky, cosmo, bins=None, redshift='Redshift', weight=None):
# input columns need to be there
for col in [redshift, weight]:
if col is not None and col not in source:
raise ValueError("'%s' column missing from input source in RedshiftHistogram" %col)
self.comm = source.comm
# using Scott's rule for binning
if bins is None:
h, bins = scotts_bin_width(source.compute(source[redshift]), self.comm)
if self.comm.rank == 0:
self.logger.info("using Scott's rule to determine optimal binning; h = %.2e, N_bins = %d" %(h, len(bins)-1))
# equally spaced bins from min to max val
elif numpy.isscalar(bins):
if self.comm.rank == 0:
self.logger.info("computing %d equally spaced bins" %bins)
z = source.compute(source[redshift])
maxval = self.comm.allreduce(z.max(), op=MPI.MAX)
minval = self.comm.allreduce(z.min(), op=MPI.MIN)
bins = linspace(minval, maxval, bins + 1, endpoint=True)
self.source = source
self.cosmo = cosmo
self.attrs = {}
self.attrs['edges'] = bins
self.attrs['fsky'] = fsky
self.attrs['redshift'] = redshift
self.attrs['weight'] = weight
self.attrs['cosmo'] = dict(cosmo)
# and run
self.run()
示例6: global_min
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import MIN [as 別名]
def global_min(vs, arr, axis=None):
from mpi4py import MPI
return _reduce(vs, arr, MPI.MIN, axis=axis)
示例7: sample
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import MIN [as 別名]
def sample(self, u):
'''Evaluate the probes listing the time as t'''
self.readings_local[:] = np.hstack([f(u) for f in self.probes]) # Get local
self.comm.Allreduce(self.readings_local, self.readings, op=py_mpi.MIN) # Sync
return self.readings.reshape((self.nprobes, -1))
示例8: get_best_fitness
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import MIN [as 別名]
def get_best_fitness(self):
"""Gets the fitness of most fit member
Returns
-------
:
Fitness of best individual in the archipelago
"""
best_on_proc = self._island.get_best_fitness()
best_fitness = self.comm.allreduce(best_on_proc, op=MPI.MIN)
return best_fitness
示例9: test_op_to_mpi
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import MIN [as 別名]
def test_op_to_mpi(self):
reload(util)
assert util.op_to_mpi('+') == MPI.SUM
assert util.op_to_mpi("sum") == MPI.SUM
assert util.op_to_mpi("add") == MPI.SUM
assert util.op_to_mpi('*') == MPI.PROD
assert util.op_to_mpi("prod") == MPI.PROD
assert util.op_to_mpi("product") == MPI.PROD
assert util.op_to_mpi("mul") == MPI.PROD
assert util.op_to_mpi("max") == MPI.MAX
assert util.op_to_mpi("maximum") == MPI.MAX
assert util.op_to_mpi("min") == MPI.MIN
assert util.op_to_mpi("minimum") == MPI.MIN
示例10: scotts_bin_width
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import MIN [as 別名]
def scotts_bin_width(data, comm):
r"""
Return the optimal histogram bin width using Scott's rule,
defined as:
.. math::
h = \sigma \sqrt[3]{\frac{24 * \sqrt{\pi}}{n}}
.. note::
This is a collective operation
Parameters
----------
data : array_like
the array that we are histograming
comm :
the MPI communicator
Returns
-------
dx : float
the bin spacing
edges : array_like
the array holding the bin edges
"""
# compute the mean
csum = comm.allreduce(data.sum())
csize = comm.allreduce(data.size)
cmean = csum / csize
# std dev
rsum = comm.allreduce((abs(data - cmean)**2).sum())
sigma = (rsum / csize)**0.5
dx = sigma * (24. * numpy.sqrt(numpy.pi) / csize) ** (1. / 3)
maxval = comm.allreduce(data.max(), op=MPI.MAX)
minval = comm.allreduce(data.min(), op=MPI.MIN)
Nbins = numpy.ceil((maxval - minval) * 1. / dx)
Nbins = max(1, Nbins)
edges = minval + dx * numpy.arange(Nbins + 1)
return dx, edges
示例11: centerofmass
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import MIN [as 別名]
def centerofmass(label, pos, boxsize, comm=MPI.COMM_WORLD):
"""
Calulate the center of mass of particles of the same label.
The center of mass is defined as the mean of positions of particles,
but care has to be taken regarding to the periodic boundary.
This is a collective operation, and after the call, all ranks
will have the position of halos.
Parameters
----------
label : array_like (integers)
Halo label of particles, >=0
pos : array_like (float, 3)
position of particles.
boxsize : float or None
size of the periodic box, or None if no periodic boundary is assumed.
comm : :py:class:`MPI.Comm`
communicator for the collective operation.
Returns
-------
hpos : array_like (float, 3)
the center of mass position of the halos.
"""
Nhalo0 = max(comm.allgather(label.max())) + 1
N = numpy.bincount(label, minlength=Nhalo0)
comm.Allreduce(MPI.IN_PLACE, N, op=MPI.SUM)
if boxsize is not None:
posmin = equiv_class(label, pos, op=numpy.fmin, dense_labels=True, identity=numpy.inf,
minlength=len(N))
comm.Allreduce(MPI.IN_PLACE, posmin, op=MPI.MIN)
dpos = pos - posmin[label]
for i in range(dpos.shape[-1]):
bhalf = boxsize[i] * 0.5
dpos[..., i][dpos[..., i] < -bhalf] += boxsize[i]
dpos[..., i][dpos[..., i] >= bhalf] -= boxsize[i]
else:
dpos = pos
dpos = equiv_class(label, dpos, op=numpy.add, dense_labels=True, minlength=len(N))
comm.Allreduce(MPI.IN_PLACE, dpos, op=MPI.SUM)
dpos /= N[:, None]
if boxsize is not None:
hpos = posmin + dpos
hpos %= boxsize
else:
hpos = dpos
return hpos
示例12: __init__
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import MIN [as 別名]
def __init__(self, u, locations):
# The idea here is that u(x) means: search for cell containing x,
# evaluate the basis functions of that element at x, restrict
# the coef vector of u to the cell. Of these 3 steps the first
# two don't change. So we cache them
# Locate each point
mesh = u.function_space().mesh()
limit = mesh.num_entities(mesh.topology().dim())
bbox_tree = mesh.bounding_box_tree()
# In parallel x might not be on process, the cell is None then
cells_for_x = [None]*len(locations)
for i, x in enumerate(locations):
cell = bbox_tree.compute_first_entity_collision(Point(*x))
from dolfin import info
if -1 < cell < limit:
cells_for_x[i] = cell
V = u.function_space()
element = V.dolfin_element()
size = V.ufl_element().value_size()
# Build the sampling matrix
evals = []
for x, cell in zip(locations, cells_for_x):
# If we own the cell we alloc stuff and precompute basis matrix
if cell is not None:
basis_matrix = np.zeros(size*element.space_dimension())
coefficients = np.zeros(element.space_dimension())
cell = Cell(mesh, cell)
vertex_coords, orientation = cell.get_vertex_coordinates(), cell.orientation()
# Eval the basis once
element.evaluate_basis_all(basis_matrix, x, vertex_coords, orientation)
basis_matrix = basis_matrix.reshape((element.space_dimension(), size)).T
# Make sure foo is bound to right objections
def foo(u, c=coefficients, A=basis_matrix, elm=cell, vc=vertex_coords):
# Restrict for each call using the bound cell, vc ...
u.restrict(c, element, elm, vc, elm)
# A here is bound to the right basis_matrix
return np.dot(A, c)
# Otherwise we use the value which plays nicely with MIN reduction
else:
foo = lambda u, size=size: (np.finfo(float).max)*np.ones(size)
evals.append(foo)
self.probes = evals
# To get the correct sampling on all cpus we reduce the local samples across
# cpus
self.comm = V.mesh().mpi_comm().tompi4py()
self.readings = np.zeros(size*len(locations), dtype=float)
self.readings_local = np.zeros_like(self.readings)
# Return the value in the shape of vector/matrix
self.nprobes = len(locations)