當前位置: 首頁>>代碼示例>>Python>>正文


Python MPI.IN_PLACE屬性代碼示例

本文整理匯總了Python中mpi4py.MPI.IN_PLACE屬性的典型用法代碼示例。如果您正苦於以下問題:Python MPI.IN_PLACE屬性的具體用法?Python MPI.IN_PLACE怎麽用?Python MPI.IN_PLACE使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在mpi4py.MPI的用法示例。


在下文中一共展示了MPI.IN_PLACE屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _get_minmax_coordinates_mesh

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import IN_PLACE [as 別名]
def _get_minmax_coordinates_mesh(self, axis=0):
        """ Return the minimum and maximum coordinates along axis

        parameter:
        ----------
            axis:
                axis

        returns:
        -------
            tuple: minV, maxV

        """
        maxVal = np.zeros((1))
        minVal = np.zeros((1))
        maxVal[0] = self.Model.mesh.data[:, axis].max()
        minVal[0] = self.Model.mesh.data[:, axis].min()

        comm.Barrier()
        comm.Allreduce(_MPI.IN_PLACE, maxVal, op=_MPI.MAX)
        comm.Allreduce(_MPI.IN_PLACE, minVal, op=_MPI.MIN)
        comm.Barrier()

        return minVal, maxVal 
開發者ID:underworldcode,項目名稱:UWGeodynamics,代碼行數:26,代碼來源:_mesh_advector.py

示例2: reduce

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import IN_PLACE [as 別名]
def reduce(self, input, root=0):
        """Reduce operation in-place.

        Sums input across all nodes in root node.

        Args:
            input (array): input array.
            root (int): root node rank.

        """
        if self.size > 1:
            cpu_input = to_device(input, cpu_device)
            if self.rank == root:
                self.mpi_comm.Reduce(MPI.IN_PLACE, cpu_input, root=root)
                copyto(input, cpu_input)
            else:
                self.mpi_comm.Reduce(cpu_input, None, root=root) 
開發者ID:mikgroup,項目名稱:sigpy,代碼行數:19,代碼來源:backend.py

示例3: safeAllreduceInPlace

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import IN_PLACE [as 別名]
def safeAllreduceInPlace(comm, in_array):
    shape = in_array.shape
    length = len(shape)
    # just use 16 for blocksize, size of complex(double)
    chunk_size = get_max_blocksize_from_mem(list(shape),16.,MEM_SIZE,priority_list=numpy.arange(length)[::-1])
    task_list = generate_task_list(chunk_size,shape)
    for block in task_list:
        which_slice = [slice(*x) for x in block]
        tmp = in_array[tuple(which_slice)].copy()
        comm.Allreduce(MPI.IN_PLACE, tmp, op=MPI.SUM)
        in_array[tuple(which_slice)] = tmp 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:13,代碼來源:mpi_helper.py

示例4: _get_minmax_velocity_wall

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import IN_PLACE [as 別名]
def _get_minmax_velocity_wall(self, wall, axis=0):
        """ Return the minimum and maximum velocity component on the wall

        parameters:
        -----------
            wall: (indexSet)
                The wall.
            axis:
                axis (velocity component).
        """

        # Initialise value to max and min sys values
        maxV = np.ones((1)) * sys.float_info.min
        minV = np.ones((1)) * sys.float_info.max

        # if local domain has wall, get velocities
        if wall.data.size > 0:
            velocities  = self.Model.velocityField.data[wall.data, axis]
            # get local min and max
            maxV[0] = velocities.max()
            minV[0] = velocities.min()

        # reduce operation
        comm.Barrier()
        comm.Allreduce(_MPI.IN_PLACE, maxV, op=_MPI.MAX)
        comm.Allreduce(_MPI.IN_PLACE, minV, op=_MPI.MIN)
        comm.Barrier()

        return minV, maxV 
開發者ID:underworldcode,項目名稱:UWGeodynamics,代碼行數:31,代碼來源:_mesh_advector.py

示例5: fof_find_peaks

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import IN_PLACE [as 別名]
def fof_find_peaks(source, label, comm,
                position='Position', column='Density'):
    """
    Find position of the peak (maximum) from a given column for a fof result.
    """
    Nhalo0 = max(comm.allgather(label.max())) + 1

    N = numpy.bincount(label, minlength=Nhalo0)
    comm.Allreduce(MPI.IN_PLACE, N, op=MPI.SUM)

    return hpos 
開發者ID:bccp,項目名稱:nbodykit,代碼行數:13,代碼來源:fof.py

示例6: count

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import IN_PLACE [as 別名]
def count(label, comm=MPI.COMM_WORLD):
    """
    Count the number of particles of the same label.

    This is a collective operation, and after the call, all ranks
    will have the particle count.

    Parameters
    ----------
    label : array_like (integers)
        Halo label of particles, >=0
    comm : :py:class:`MPI.Comm`
        communicator for the collective operation.

    Returns
    -------
    count : array_like
        the count of number of particles in each halo

    """
    Nhalo0 = max(comm.allgather(label.max())) + 1

    N = numpy.bincount(label, minlength=Nhalo0)
    comm.Allreduce(MPI.IN_PLACE, N, op=MPI.SUM)

    return N 
開發者ID:bccp,項目名稱:nbodykit,代碼行數:28,代碼來源:fof.py

示例7: __reduce_like

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import IN_PLACE [as 別名]
def __reduce_like(self, func, sendbuf, recvbuf, *args, **kwargs):
        sbuf = None
        rbuf = None
        buf = None
        # unpack the send buffer if it is a HeAT tensor
        if isinstance(sendbuf, dndarray.DNDarray):
            sendbuf = sendbuf._DNDarray__array
        # unpack the receive buffer if it is a HeAT tensor
        if isinstance(recvbuf, dndarray.DNDarray):
            recvbuf = recvbuf._DNDarray__array

        # harmonize the input and output buffers
        # MPI requires send and receive buffers to be of same type and length. If the torch tensors are either not both
        # contiguous or differently strided, they have to be made matching (if possible) first.
        if isinstance(sendbuf, torch.Tensor):
            # convert the send buffer to a pointer, number of elements and type are identical to the receive buffer
            dummy = (
                sendbuf.contiguous()
            )  # make a contiguous copy and reassign the storage, old will be collected
            sendbuf.set_(
                dummy.storage(), dummy.storage_offset(), size=dummy.shape, stride=dummy.stride()
            )
            sbuf = sendbuf if CUDA_AWARE_MPI else sendbuf.cpu()
            sendbuf = self.as_buffer(sbuf)
        if isinstance(recvbuf, torch.Tensor):
            buf = recvbuf
            # nothing matches, the buffers have to be made contiguous
            dummy = recvbuf.contiguous()
            recvbuf.set_(
                dummy.storage(), dummy.storage_offset(), size=dummy.shape, stride=dummy.stride()
            )
            rbuf = recvbuf if CUDA_AWARE_MPI else recvbuf.cpu()
            if sendbuf is MPI.IN_PLACE:
                recvbuf = self.as_buffer(rbuf)
            else:
                recvbuf = (self.as_mpi_memory(rbuf), sendbuf[1], sendbuf[2])

        # perform the actual reduction operation
        return func(sendbuf, recvbuf, *args, **kwargs), sbuf, rbuf, buf 
開發者ID:helmholtz-analytics,項目名稱:heat,代碼行數:41,代碼來源:communication.py

示例8: allreduce

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import IN_PLACE [as 別名]
def allreduce(self, input):
        """All reduce operation in-place.

        Sums input across all nodes and broadcast back to each node.

        Args:
            input (array): input array.

        """
        if self.size > 1:
            if config.nccl_enabled:
                device = get_device(input)
                devices = self.mpi_comm.allgather(device.id)
                if all([d >= 0 for d in devices]):
                    nccl_comm = self._get_nccl_comm(device, devices)
                    nccl_dtype, nccl_size = self._get_nccl_dtype_size(input)
                    with device:
                        nccl_comm.allReduce(input.data.ptr,
                                            input.data.ptr,
                                            nccl_size, nccl_dtype,
                                            nccl.NCCL_SUM,
                                            cp.cuda.Stream.null.ptr)
                        return

            cpu_input = to_device(input, cpu_device)
            self.mpi_comm.Allreduce(MPI.IN_PLACE, cpu_input)
            copyto(input, cpu_input) 
開發者ID:mikgroup,項目名稱:sigpy,代碼行數:29,代碼來源:backend.py

示例9: Wooov

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import IN_PLACE [as 別名]
def Wooov(cc,t1,t2,eris,fint=None):
    nkpts, nocc, nvir = t1.shape
    kconserv = cc.kconserv

    if fint is None:
        Wklid = np.zeros((nkpts,nkpts,nkpts,nocc,nocc,nocc,nvir),dtype=t2.dtype)
    else:
        Wklid = fint['Wooov']

    # TODO can do much better than this... call recursive function
    # Adaptive blocking begins here
    mem = 0.5e9
    pre = 1.*nocc*nocc*nvir*nvir*nkpts*16
    nkpts_blksize = min(max(int(np.floor(mem/pre)),1),nkpts)
    nkpts_blksize2 = min(max(int(np.floor(mem/(pre*nkpts_blksize))),1),nkpts)
    BLKSIZE = (nkpts_blksize2,nkpts_blksize,nkpts,)
    loader = mpi_load_balancer.load_balancer(BLKSIZE=BLKSIZE)
    loader.set_ranges((range(nkpts),range(nkpts),range(nkpts),))
    # Adaptive blocking ends here
    ooov_tmp_size = BLKSIZE + (nocc,nocc,nocc,nvir)
    ooov_tmp = np.empty(ooov_tmp_size,dtype=t2.dtype)

    good2go = True
    while(good2go):
        good2go, data = loader.slave_set()
        if good2go is False:
            break
        ranges0, ranges1, ranges2 = loader.get_blocks_from_data(data)

        s0,s1,s2 = [slice(min(x),max(x)+1) for x in (ranges0,ranges1,ranges2)]
        eris_ooov_kli = _cp(eris.ooov[s0,s1,s2])
        eris_oovv_kli = _cp(eris.oovv[s0,s1,s2])

        for iterkk,kk in enumerate(ranges0):
            for iterkl,kl in enumerate(ranges1):
                for iterki,ki in enumerate(ranges2):
                    kd = kconserv[kk,ki,kl]
                    ooov_tmp[iterkk,iterkl,iterki] = eris_ooov_kli[iterkk,iterkl,iterki].copy()
                    ooov_tmp[iterkk,iterkl,iterki] += einsum('ic,klcd->klid',t1[ki],eris_oovv_kli[iterkk,iterkl,iterki])
        Wklid[s0,s1,s2] = ooov_tmp[:len(ranges0),:len(ranges1),:len(ranges2)]
        loader.slave_finished()

    comm.Barrier()
    if fint is None:
        comm.Allreduce(MPI.IN_PLACE, Wklid, op=MPI.SUM)

    return Wklid 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:49,代碼來源:kintermediates_rhf.py

示例10: Wvovv

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import IN_PLACE [as 別名]
def Wvovv(cc,t1,t2,eris,fint=None):
    nkpts, nocc, nvir = t1.shape
    kconserv = cc.kconserv

    if fint is None:
        Walcd = np.zeros((nkpts,nkpts,nkpts,nvir,nocc,nvir,nvir),dtype=t2.dtype)
    else:
        Walcd = fint['Wvovv']

    # TODO can do much better than this... call recursive function
    # Adaptive blocking begins here
    mem = 0.5e9
    pre = 1.*nvir*nocc*nvir*nvir*nkpts*16
    nkpts_blksize = min(max(int(np.floor(mem/pre)),1),nkpts)
    nkpts_blksize2 = min(max(int(np.floor(mem/(pre*nkpts_blksize))),1),nkpts)
    BLKSIZE = (nkpts_blksize2,nkpts_blksize,nkpts,)
    loader = mpi_load_balancer.load_balancer(BLKSIZE=BLKSIZE)
    loader.set_ranges((range(nkpts),range(nkpts),range(nkpts),))
    # Adaptive blocking ends here
    vovv_tmp_size = BLKSIZE + (nvir,nocc,nvir,nvir)
    vovv_tmp = np.empty(vovv_tmp_size,dtype=t2.dtype)

    good2go = True
    while(good2go):
        good2go, data = loader.slave_set()
        if good2go is False:
            break
        ranges0, ranges1, ranges2 = loader.get_blocks_from_data(data)

        s0,s1,s2 = [slice(min(x),max(x)+1) for x in (ranges0,ranges1,ranges2)]
        eris_vovv_alc = _cp(eris.vovv[s0,s1,s2])
        eris_oovv_alc = _cp(eris.oovv[s0,s1,s2])

        for iterka,ka in enumerate(ranges0):
            for iterkl,kl in enumerate(ranges1):
                for iterkc,kc in enumerate(ranges2):
                    kd = kconserv[ka,kc,kl]
                    # vovv[ka,kl,kc,kd] <= ovvv[kl,ka,kd,kc].transpose(1,0,3,2)
                    vovv_tmp[iterka,iterkl,iterkc] = eris_vovv_alc[iterka,iterkl,iterkc] #np.array(eris.ovvv[kl,ka,kd]).transpose(1,0,3,2)
                    vovv_tmp[iterka,iterkl,iterkc] += -einsum('ka,klcd->alcd',t1[ka],eris_oovv_alc[iterka,iterkl,iterkc])
        Walcd[s0,s1,s2] = vovv_tmp[:len(ranges0),:len(ranges1),:len(ranges2)]
        loader.slave_finished()

    comm.Barrier()
    if fint is None:
        comm.Allreduce(MPI.IN_PLACE, Walcd, op=MPI.SUM)

    return Walcd 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:50,代碼來源:kintermediates_rhf.py

示例11: W1ovvo

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import IN_PLACE [as 別名]
def W1ovvo(cc,t1,t2,eris,fint=None):
    nkpts, nocc, nvir = t1.shape
    kconserv = cc.kconserv

    if fint is None:
        Wkaci  = np.zeros((nkpts,nkpts,nkpts,nocc,nvir,nvir,nocc),dtype=t1.dtype)
    else:
        Wkaci  = fint['W1ovvo']

    # Adaptive blocking begins here
    mem = 0.5e9
    pre = 1.*nocc*nocc*nvir*nvir*nkpts*16
    nkpts_blksize = min(max(int(np.floor(mem/pre)),1),nkpts)
    nkpts_blksize2 = min(max(int(np.floor(mem/(pre*nkpts_blksize))),1),nkpts)
    BLKSIZE = (nkpts_blksize2,nkpts_blksize,nkpts,)
    loader = mpi_load_balancer.load_balancer(BLKSIZE=BLKSIZE)
    loader.set_ranges((range(nkpts),range(nkpts),range(nkpts),))
    # Adaptive blocking ends here
    ovvo_tmp_size = BLKSIZE + (nocc,nvir,nvir,nocc)
    ovvo_tmp = np.empty(ovvo_tmp_size,dtype=t2.dtype)

    good2go = True
    while(good2go):
        good2go, data = loader.slave_set()
        if good2go is False:
            break
        ranges0, ranges1, ranges2 = loader.get_blocks_from_data(data)

        s0,s1,s2 = [slice(min(x),max(x)+1) for x in (ranges0,ranges1,ranges2)]

        eris_ovvo_kac = _cp(eris.ovvo[s0,s1,s2])
        eris_oovv_kXc = _cp(eris.oovv[s0,:,s2])
        eris_oovv_Xkc = _cp(eris.oovv[:,s0,s2])

        for iterkk,kk in enumerate(ranges0):
            for iterka,ka in enumerate(ranges1):
                for iterkc,kc in enumerate(ranges2):
                    ki = kconserv[kk,kc,ka]
                    ovvo_tmp[iterkk,iterka,iterkc] = _cp(eris_ovvo_kac[iterkk,iterka,iterkc])
                    #St2 = 2.*t2[ki,:,ka]
                    St2 = 2.*unpack_tril(t2,nkpts,ki,range(nkpts),ka,kconserv[ki,ka,range(nkpts)])
                    #St2 -= t2[:,ki,ka].transpose(0,2,1,3,4)
                    St2 -= unpack_tril(t2,nkpts,range(nkpts),ki,ka,kconserv[range(nkpts),ka,ki]).transpose(0,2,1,3,4)
                    ovvo_tmp[iterkk,iterka,iterkc] += einsum('klcd,ilad->kaci',eris_oovv_kXc[iterkk,:,iterkc].transpose(1,0,2,3,4).reshape(nocc,nkpts*nocc,nvir,nvir),
                                                                St2.transpose(1,0,2,3,4).reshape(nocc,nkpts*nocc,nvir,nvir))
                    ovvo_tmp[iterkk,iterka,iterkc] += -einsum('lkcd,ilad->kaci',eris_oovv_Xkc[:,iterkk,iterkc].reshape(nocc*nkpts,nocc,nvir,nvir),
                                               unpack_tril(t2,nkpts,ki,range(nkpts),ka,kconserv[ki,ka,range(nkpts)]).transpose(1,0,2,3,4).reshape(nocc,nkpts*nocc,nvir,nvir))
#                                                                t2[ki,:,ka].transpose(1,0,2,3,4).reshape(nocc,nkpts*nocc,nvir,nvir))
        Wkaci[s0,s1,s2] = ovvo_tmp[:len(ranges0),:len(ranges1),:len(ranges2)]

        loader.slave_finished()

    comm.Barrier()

    if fint is None:
        comm.Allreduce(MPI.IN_PLACE, Wkaci, op=MPI.SUM)

    return Wkaci 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:60,代碼來源:kintermediates_rhf.py

示例12: W2ovvo

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import IN_PLACE [as 別名]
def W2ovvo(cc,t1,t2,eris,fint=None):
    nkpts, nocc, nvir = t1.shape
    kconserv = cc.kconserv

    if fint is None:
        Wkaci  = np.zeros((nkpts,nkpts,nkpts,nocc,nvir,nvir,nocc),dtype=t1.dtype)
        WWooov = Wooov(cc,t1,t2,eris)
    else:
        Wkaci  = fint['W2ovvo']
        WWooov = fint['Wooov']

    # Adaptive blocking begins here
    mem = 0.5e9
    pre = 1.*nocc*nvir*nvir*nvir*nkpts*16
    nkpts_blksize = min(max(int(np.floor(mem/pre)),1),nkpts)
    nkpts_blksize2 = min(max(int(np.floor(mem/(pre*nkpts_blksize))),1),nkpts)
    BLKSIZE = (nkpts_blksize2,nkpts_blksize,nkpts,)
    loader = mpi_load_balancer.load_balancer(BLKSIZE=BLKSIZE)
    loader.set_ranges((range(nkpts),range(nkpts),range(nkpts),))
    # Adaptive blocking ends here
    ovvo_tmp_size = BLKSIZE + (nocc,nvir,nvir,nocc)
    ovvo_tmp = np.empty(ovvo_tmp_size,dtype=t2.dtype)

    good2go = True
    while(good2go):
        good2go, data = loader.slave_set()
        if good2go is False:
            break
        ranges0, ranges1, ranges2 = loader.get_blocks_from_data(data)

        s0,s1,s2 = [slice(min(x),max(x)+1) for x in (ranges0,ranges1,ranges2)]

        Wooov_akX     = _cp(WWooov[s1,s0])
        eris_ovvv_kac = _cp(eris.ovvv[s0,s1,s2])

        for iterkk,kk in enumerate(ranges0):
            for iterka,ka in enumerate(ranges1):
                for iterkc,kc in enumerate(ranges2):
                    ki = kconserv[kk,kc,ka]
                    ovvo_tmp[iterkk,iterka,iterkc] = einsum('la,lkic->kaci',-t1[ka],Wooov_akX[iterka,iterkk,ki])
                    ovvo_tmp[iterkk,iterka,iterkc] += einsum('akdc,id->kaci',eris_ovvv_kac[iterkk,iterka,iterkc].transpose(1,0,3,2),t1[ki])

        Wkaci[s0,s1,s2] = ovvo_tmp[:len(ranges0),:len(ranges1),:len(ranges2)]

        loader.slave_finished()

    comm.Barrier()

    if fint is None:
        comm.Allreduce(MPI.IN_PLACE, Wkaci, op=MPI.SUM)

    return Wkaci 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:54,代碼來源:kintermediates_rhf.py

示例13: Wovvo

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import IN_PLACE [as 別名]
def Wovvo(cc,t1,t2,eris,fint=None):
    nkpts, nocc, nvir = t1.shape
    kconserv = cc.kconserv

    if fint is None:
        Wkaci = np.zeros((nkpts,nkpts,nkpts,nocc,nvir,nvir,nocc),dtype=t2.dtype)
        W1kaci = W1ovvo(cc,t1,t2,eris,fint)
        W2kaci = W2ovvo(cc,t1,t2,eris,fint)
    else:
        Wkaci = fint['Wovvo']
        W1kaci = fint['W1ovvo']
        W2kaci = fint['W2ovvo']

    # TODO can do much better than this... call recursive function
    # Adaptive blocking begins here
    mem = 0.5e9
    pre = 1.*nocc*nocc*nvir*nvir*nkpts*16
    nkpts_blksize = min(max(int(np.floor(mem/pre)),1),nkpts)
    nkpts_blksize2 = min(max(int(np.floor(mem/(pre*nkpts_blksize))),1),nkpts)
    BLKSIZE = (nkpts_blksize2,nkpts_blksize,nkpts,)
    loader = mpi_load_balancer.load_balancer(BLKSIZE=BLKSIZE)
    loader.set_ranges((range(nkpts),range(nkpts),range(nkpts),))
    # Adaptive blocking ends here

    good2go = True
    while(good2go):
        good2go, data = loader.slave_set()
        if good2go is False:
            break
        ranges0, ranges1, ranges2 = loader.get_blocks_from_data(data)

        s0,s1,s2 = [slice(min(x),max(x)+1) for x in (ranges0,ranges1,ranges2)]
        Wkaci[s0,s1,s2] = _cp(W1kaci[s0,s1,s2]) + _cp(W2kaci[s0,s1,s2])

        loader.slave_finished()

    comm.Barrier()

    if fint is None:
        comm.Allreduce(MPI.IN_PLACE, Wkaci, op=MPI.SUM)

    return Wkaci 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:44,代碼來源:kintermediates_rhf.py

示例14: W2ovov

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import IN_PLACE [as 別名]
def W2ovov(cc,t1,t2,eris,fint=None):
    nkpts, nocc, nvir = t1.shape
    kconserv = cc.kconserv

    if fint is None:
        Wkbid = np.zeros((nkpts,nkpts,nkpts,nocc,nvir,nocc,nvir),dtype=t2.dtype)
        WWooov = Wooov(cc,t1,t2,eris)
    else:
        Wkbid = fint['W2ovov']
        WWooov = fint['Wooov']

    # Adaptive blocking begins here
    mem = 0.5e9
    pre = 1.*nocc*nvir*nvir*nvir*nkpts*16
    nkpts_blksize = min(max(int(np.floor(mem/pre)),1),nkpts)
    nkpts_blksize2 = min(max(int(np.floor(mem/(pre*nkpts_blksize))),1),nkpts)
    BLKSIZE = (nkpts_blksize2,nkpts_blksize,nkpts,)
    loader = mpi_load_balancer.load_balancer(BLKSIZE=BLKSIZE)
    loader.set_ranges((range(nkpts),range(nkpts),range(nkpts),))
    # Adaptive blocking ends here
    ovov_tmp_size = BLKSIZE + (nocc,nvir,nocc,nvir)
    ovov_tmp = np.empty(ovov_tmp_size,dtype=t2.dtype)

    good2go = True
    while(good2go):
        good2go, data = loader.slave_set()
        if good2go is False:
            break
        ranges0, ranges1, ranges2 = loader.get_blocks_from_data(data)

        s0,s1,s2 = [slice(min(x),max(x)+1) for x in (ranges0,ranges1,ranges2)]
        eris_ovvv  = _cp(eris.ovvv[s0,s1,s2])
        WWooov_kbi = _cp(WWooov[s0,s1,s2])

        for iterkk,kk in enumerate(ranges0):
            for iterkb,kb in enumerate(ranges1):
                for iterki,ki in enumerate(ranges2):
                    kd = kconserv[kk,ki,kb]
                    ovov_tmp[iterkk,iterkb,iterki] = einsum('klid,lb->kbid',WWooov_kbi[iterkk,iterkb,iterki],-t1[kb])
                    ovov_tmp[iterkk,iterkb,iterki] += einsum('kbcd,ic->kbid',eris_ovvv[iterkk,iterkb,iterki],t1[ki])
        Wkbid[s0,s1,s2] = ovov_tmp[:len(ranges0),:len(ranges1),:len(ranges2)]
        loader.slave_finished()

    comm.Barrier()
    if fint is None:
        comm.Allreduce(MPI.IN_PLACE, Wkbid, op=MPI.SUM)

    return Wkbid 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:50,代碼來源:kintermediates_rhf.py

示例15: Wovov

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import IN_PLACE [as 別名]
def Wovov(cc,t1,t2,eris,fint=None):
    nkpts, nocc, nvir = t1.shape
    kconserv = cc.kconserv

    if fint is None:
        Wkbid = np.zeros((nkpts,nkpts,nkpts,nocc,nvir,nocc,nvir),dtype=t2.dtype)
        WW1ovov = W1ovov(cc,t1,t2,eris)
        WW2ovov = W2ovov(cc,t1,t2,eris)
    else:
        Wkbid = fint['Wovov']
        WW1ovov = fint['W1ovov']
        WW2ovov = fint['W2ovov']

    # Adaptive blocking begins here
    mem = 0.5e9
    pre = 1.*nocc*nocc*nvir*nvir*nkpts*16
    nkpts_blksize = min(max(int(np.floor(mem/pre)),1),nkpts)
    nkpts_blksize2 = min(max(int(np.floor(mem/(pre*nkpts_blksize))),1),nkpts)
    BLKSIZE = (nkpts_blksize2,nkpts_blksize,nkpts,)
    loader = mpi_load_balancer.load_balancer(BLKSIZE=BLKSIZE)
    loader.set_ranges((range(nkpts),range(nkpts),range(nkpts),))
    # Adaptive blocking ends here
    ovov_tmp_size = BLKSIZE + (nocc,nvir,nocc,nvir)
    ovov_tmp = np.empty(ovov_tmp_size,dtype=t2.dtype)

    good2go = True
    while(good2go):
        good2go, data = loader.slave_set()
        if good2go is False:
            break
        ranges0, ranges1, ranges2 = loader.get_blocks_from_data(data)

        s0,s1,s2 = [slice(min(x),max(x)+1) for x in (ranges0,ranges1,ranges2)]

        Wkbid[s0,s1,s2] = _cp(WW1ovov[s0,s1,s2]) + _cp(WW2ovov[s0,s1,s2])

        loader.slave_finished()

    comm.Barrier()
    if fint is None:
        comm.Allreduce(MPI.IN_PLACE, Wkbid, op=MPI.SUM)

    return Wkbid 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:45,代碼來源:kintermediates_rhf.py


注:本文中的mpi4py.MPI.IN_PLACE屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。