本文整理匯總了Python中mpi4py.MPI.INT屬性的典型用法代碼示例。如果您正苦於以下問題:Python MPI.INT屬性的具體用法?Python MPI.INT怎麽用?Python MPI.INT使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類mpi4py.MPI
的用法示例。
在下文中一共展示了MPI.INT屬性的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_array_buffer
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import INT [as 別名]
def get_array_buffer(vs, arr):
from mpi4py import MPI
MPI_TYPE_MAP = {
'int8': MPI.CHAR,
'int16': MPI.SHORT,
'int32': MPI.INT,
'int64': MPI.LONG,
'int128': MPI.LONG_LONG,
'float32': MPI.FLOAT,
'float64': MPI.DOUBLE,
'bool': MPI.BOOL,
}
if rs.backend == 'bohrium':
if np.check(arr):
buf = np.interop_numpy.get_array(arr)
else:
buf = arr
else:
buf = arr
return [buf, arr.size, MPI_TYPE_MAP[str(arr.dtype)]]
示例2: numpy_to_MPI_typemap
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import INT [as 別名]
def numpy_to_MPI_typemap(np_type):
from mpi4py import MPI
typemap = {
np.dtype(np.float64) : MPI.DOUBLE,
np.dtype(np.float32) : MPI.FLOAT,
np.dtype(np.int) : MPI.INT,
np.dtype(np.int8) : MPI.CHAR,
np.dtype(np.uint8) : MPI.UNSIGNED_CHAR,
np.dtype(np.int32) : MPI.INT,
np.dtype(np.uint32) : MPI.UNSIGNED_INT,
}
return typemap[np_type]
示例3: CalcCommWorldTotal
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import INT [as 別名]
def CalcCommWorldTotal(self, np_array):
assert np_array.size > 0
total = np.zeros(np_array.size, dtype='i')
#print(self.rank, type(total), type(np_array), total, np_array, np_array.size)
# If you want this number on rank 0, just use Reduce.
self.comm.Allreduce([np_array, MPI.INT], [total, MPI.INT], op=MPI.SUM)
return total
示例4: main
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import INT [as 別名]
def main():
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
data = None
if rank == 0:
data = np.array([1, 2, 3])
req = comm.isend(data, dest=1)
req.wait()
elif rank == 1:
data = comm.recv(source=0)
print(data)
#
# if rank == 0:
# n = 10
# for i in range(n):
# tmp = np.array(i, dtype=int)
# # print(f'{rank} sending {i} to {1} - START')
# comm.send(tmp, dest=1)
# # req = comm.isend(tmp, dest=1, tag=i)
# # req = comm.Isend((tmp, MPI.INT), dest=1, tag=i)
# # req.wait()
# # print(f'{rank} sending {i} to {1} - STOP')
# elif rank == 1:
# pass
示例5: test_map
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import INT [as 別名]
def test_map(self):
def square_mpi(x, npc=None):
local_res = numpy.array([2*(x**2)], 'i')
#global_res = numpy.array([0], 'i')
#MPI.COMM_WORLD.Reduce([local_res,MPI.INT], [global_res,MPI.INT], op=MPI.SUM, root=0)
return local_res[0]
data = [1,2,3,4,5]
pds = backend_mpi.parallelize(data)
pds_map = backend_mpi.map(square_mpi, pds)
res = backend_mpi.collect(pds_map)
assert res==list(map(lambda x:2*(x**2),data))
示例6: test_function_pickle
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import INT [as 別名]
def test_function_pickle(self):
def square_mpi(x, npc=None):
local_res = numpy.array([2*(x**2)], 'i')
#global_res = numpy.array([0], 'i')
#model_comm.Reduce([local_res,MPI.INT], [global_res,MPI.INT], op=MPI.SUM, root=0)
return local_res[0]
class staticfunctest_mpi:
@staticmethod
def square_mpi(x, npc=None):
local_res = numpy.array([2*(x**2)], 'i')
#global_res = numpy.array([0], 'i')
#model_comm.Reduce([local_res,MPI.INT], [global_res,MPI.INT], op=MPI.SUM, root=0)
return local_res[0]
class nonstaticfunctest_mpi:
def square_mpi(self, x, npc=None):
local_res = numpy.array([2*(x**2)], 'i')
#global_res = numpy.array([0], 'i')
#model_comm.Reduce([local_res,MPI.INT], [global_res,MPI.INT], op=MPI.SUM, root=0)
return local_res[0]
data = [1,2,3,4,5]
expected_result = [2,8,18,32,50]
pds = backend_mpi.parallelize(data)
pds_map1 = backend_mpi.map(square_mpi,pds)
pds_res1 = backend_mpi.collect(pds_map1)
self.assertTrue(pds_res1==expected_result,"Failed pickle test for general function")
pds_map3 = backend_mpi.map(staticfunctest_mpi.square_mpi,pds)
pds_res3 = backend_mpi.collect(pds_map3)
self.assertTrue(pds_res3==expected_result,"Failed pickle test for static function")
obj = nonstaticfunctest_mpi()
pds_map4 = backend_mpi.map(obj.square_mpi ,pds)
pds_res4 = backend_mpi.collect(pds_map4)
self.assertTrue(pds_res4==expected_result,"Failed pickle test for non-static function")
示例7: paired_update
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import INT [as 別名]
def paired_update(comm, previous_encounters_s, Count_sz_local, Count_sz_pair, \
Count_sz_others, P_local, P_pair):
rank = comm.rank
comm.isend(rank, dest=MASTER, tag=Msg.PAIRME.value)
pair_id = comm.recv(source=MASTER, tag=Msg.PAIRED.value)
if pair_id == rank: #Paired with self, do nothing
return False
elif pair_id < rank:
comm.Recv([Count_sz_pair, MPI.INT], source=pair_id)
comm.Recv([P_pair, MPI.DOUBLE], source=pair_id)
comm.Send([Count_sz_local, MPI.INT], dest=pair_id)
comm.Send([P_local, MPI.DOUBLE], dest=pair_id)
else:
comm.Send([Count_sz_local, MPI.INT], dest=pair_id)
comm.Send([P_local, MPI.DOUBLE], dest=pair_id)
comm.Recv([Count_sz_pair, MPI.INT], source=pair_id)
comm.Recv([P_pair, MPI.DOUBLE], source=pair_id)
#Update Counts
#[:] is to avoid copies of arrays. Make sure we dont lose anything
N_til_s = previous_encounters_s[pair_id]
Count_sz_others[:] = Count_sz_others + Count_sz_pair - N_til_s
N_til_s[:] = Count_sz_pair
P_local[:] = (P_local + P_pair) / 2.0
return True
示例8: receive_workload
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import INT [as 別名]
def receive_workload(comm):
sizes = np.zeros(6, dtype='i')
comm.Recv([sizes, MPI.INT], source=MASTER)
num_lines = sizes[0]
nz = sizes[1]
nh = sizes[2]
ns = sizes[3]
n_residency_priors = sizes[4]
mem_size = sizes[5]
Count_zh = np.zeros(shape=(nz, nh), dtype='i4')
Count_sz = np.zeros(shape=(ns, nz), dtype='i4')
count_h = np.zeros(shape=(nh, ), dtype='i4')
count_z = np.zeros(shape=(nz, ), dtype='i4')
Dts = np.zeros(shape=(num_lines, mem_size), dtype='f8')
Trace = np.zeros(shape=(num_lines, 2 + (mem_size + 1)), dtype='i4')
comm.Recv([Dts, MPI.DOUBLE], source=MASTER)
comm.Recv([Trace, MPI.INT], source=MASTER)
priors = np.zeros(2 + n_residency_priors, dtype='f8')
comm.Recv([priors, MPI.DOUBLE], source=MASTER)
alpha_zh = priors[0]
beta_zs = priors[1]
residency_priors = priors[2:]
kernel_class = comm.recv(source=MASTER)
P = np.zeros(shape=(nz, n_residency_priors), dtype='f8')
comm.Recv([P, MPI.DOUBLE], source=MASTER)
kernel = kernel_class()
kernel.build(Trace.shape[0], Count_zh.shape[0], residency_priors)
if n_residency_priors > 0:
kernel.update_state(P)
return Dts, Trace, Count_zh, Count_sz, \
count_h, count_z, alpha_zh, beta_zs, kernel
示例9: work
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import INT [as 別名]
def work():
comm = MPI.COMM_WORLD
rank = comm.rank
#pr = cProfile.Profile()
#pr.enable()
while True:
status = MPI.Status()
msg = comm.recv(source=MASTER, tag=MPI.ANY_TAG, status=status)
event = status.Get_tag()
if event == Msg.LEARN.value:
comm.isend(rank, dest=MASTER, tag=Msg.STARTED.value)
num_iter = msg
Dts, Trace, Count_zh, Count_sz, count_h, count_z, \
alpha_zh, beta_zs, kernel = receive_workload(comm)
fast_populate(Trace, Count_zh, Count_sz, count_h, \
count_z)
sample(Dts, Trace, Count_zh, Count_sz, count_h, \
count_z, alpha_zh, beta_zs, kernel, num_iter, \
comm)
comm.isend(rank, dest=MASTER, tag=Msg.FINISHED.value)
elif event == Msg.SENDRESULTS.value:
comm.Send([np.array(Trace[:, -1], order='C'), MPI.INT], dest=MASTER)
comm.Send([Count_zh, MPI.INT], dest=MASTER)
comm.Send([Count_sz, MPI.INT], dest=MASTER)
comm.Send([count_h, MPI.INT], dest=MASTER)
comm.Send([count_z, MPI.INT], dest=MASTER)
comm.Send([kernel.get_state(), MPI.DOUBLE], dest=MASTER)
elif event == Msg.STOP.value:
break
else:
print('Unknown message received', msg, event, Msg(event))
#pr.disable()
#pr.dump_stats('worker-%d.pstats' % rank)
示例10: dispatch_jobs
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import INT [as 別名]
def dispatch_jobs(Dts, Trace, Count_zh, Count_sz, count_h, \
count_z, alpha_zh, beta_zs, kernel, residency_priors, \
workloads, num_workers, comm):
for worker_id in xrange(1, num_workers + 1):
idx = workloads[worker_id - 1]
sizes = np.zeros(6, dtype='i')
sizes[0] = Trace[idx].shape[0]
sizes[1] = Count_zh.shape[0]
sizes[2] = Count_zh.shape[1]
sizes[3] = Count_sz.shape[0]
sizes[4] = residency_priors.shape[0]
sizes[5] = Dts.shape[1]
comm.Send([sizes, MPI.INT], dest=worker_id)
comm.Send([Dts[idx], MPI.INT], dest=worker_id)
comm.Send([Trace[idx], MPI.INT], dest=worker_id)
priors = np.zeros(2 + residency_priors.shape[0], dtype='f8')
priors[0] = alpha_zh
priors[1] = beta_zs
priors[2:] = residency_priors
comm.Send([priors, MPI.DOUBLE], dest=worker_id)
comm.send(kernel.__class__, dest=worker_id)
comm.Send([kernel.get_state(), MPI.DOUBLE], dest=worker_id)
示例11: fetch_results
# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import INT [as 別名]
def fetch_results(comm, num_workers, workloads, Dts, Trace, \
previous_stamps, Count_zh, Count_sz, count_h, count_z, \
alpha_zh, beta_zs, Theta_zh, Psi_sz, kernel):
Count_zh[:] = 0
Count_zh_buff = np.zeros_like(Count_zh)
Count_sz[:] = 0
Count_sz_buff = np.zeros_like(Count_sz)
count_h[:] = 0
count_h_buff = np.zeros_like(count_h)
count_z[:] = 0
count_z_buff = np.zeros_like(count_z)
P = kernel.get_state()
P[:] = 0
P_buff = np.zeros_like(P)
for worker_id in xrange(1, num_workers + 1):
comm.isend(worker_id, dest=worker_id, tag=Msg.SENDRESULTS.value)
idx = workloads[worker_id - 1]
assign = np.zeros(Trace[idx].shape[0], dtype='i')
comm.Recv([assign, MPI.INT], source=worker_id)
Trace[:, -1][idx] = assign
comm.Recv([Count_zh_buff, MPI.INT], source=worker_id)
Count_zh += Count_zh_buff
comm.Recv([Count_sz_buff, MPI.INT], source=worker_id)
Count_sz += Count_sz_buff
comm.Recv([count_h_buff, MPI.INT], source=worker_id)
count_h += count_h_buff
comm.Recv([count_z_buff, MPI.INT], source=worker_id)
count_z += count_z_buff
comm.Recv([P_buff, MPI.DOUBLE], source=worker_id)
P += P_buff
P[:] = P / num_workers
kernel.update_state(P)
Theta_zh[:] = 0
Psi_sz[:] = 0
_aggregate(Count_zh, Count_sz, count_h, count_z, \
alpha_zh, beta_zs, Theta_zh, Psi_sz)
Theta_zh[:] = Theta_zh / Theta_zh.sum(axis=0)
Psi_sz[:] = Psi_sz / Psi_sz.sum(axis=0)
for z in xrange(Count_zh.shape[0]):
previous_stamps._clear_one(z)
#dts_assigned = Dts[Trace[:, -1] == z].ravel().copy()
#np.sort(dts_assigned)
previous_stamps._extend(z, Dts[Trace[:, -1] == z][:, -1])