當前位置: 首頁>>代碼示例>>Python>>正文


Python MPI.DOUBLE屬性代碼示例

本文整理匯總了Python中mpi4py.MPI.DOUBLE屬性的典型用法代碼示例。如果您正苦於以下問題:Python MPI.DOUBLE屬性的具體用法?Python MPI.DOUBLE怎麽用?Python MPI.DOUBLE使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在mpi4py.MPI的用法示例。


在下文中一共展示了MPI.DOUBLE屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_array_buffer

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import DOUBLE [as 別名]
def get_array_buffer(vs, arr):
    from mpi4py import MPI

    MPI_TYPE_MAP = {
        'int8': MPI.CHAR,
        'int16': MPI.SHORT,
        'int32': MPI.INT,
        'int64': MPI.LONG,
        'int128': MPI.LONG_LONG,
        'float32': MPI.FLOAT,
        'float64': MPI.DOUBLE,
        'bool': MPI.BOOL,
    }

    if rs.backend == 'bohrium':
        if np.check(arr):
            buf = np.interop_numpy.get_array(arr)
        else:
            buf = arr
    else:
        buf = arr

    return [buf, arr.size, MPI_TYPE_MAP[str(arr.dtype)]] 
開發者ID:team-ocean,項目名稱:veros,代碼行數:25,代碼來源:distributed.py

示例2: _eval_models

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import DOUBLE [as 別名]
def _eval_models(self, models, it):
        n = models.shape[0]
        if self._mpi:
            starttime_parallel = MPI.Wtime()
            fit = np.zeros(n)
            fit_mpi = np.zeros_like(fit)
            self._mpi_comm.Barrier()
            self._mpi_comm.Bcast([ models, MPI.DOUBLE ], root = 0)
            for i in np.arange(self._mpi_rank, n, self._mpi_size):
                fit_mpi[i] = self._func(self._unstandardize(models[i]))
            self._mpi_comm.Barrier()
            self._mpi_comm.Allreduce([ fit_mpi, MPI.DOUBLE ], [ fit, MPI.DOUBLE ],
                                     op = MPI.SUM)
            self._time_parallel[it-1] = MPI.Wtime() - starttime_parallel
        else:
            fit = np.array([ self._func(self._unstandardize(models[i])) for i in range(n) ])
        self._n_eval += n
        return fit 
開發者ID:keurfonluu,項目名稱:stochopy,代碼行數:20,代碼來源:evolutionary_algorithm.py

示例3: collect_all_XY

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import DOUBLE [as 別名]
def collect_all_XY(self, root=0):
        if self.mpi_comm is None:
            XY = [self.obslayer.Y.copy()]
            for l in self.layers: XY.append(l.X.copy())
            return XY
        else:
            from mpi4py import MPI
            from GPy.core.parameterization.variational import NormalPosterior
            N,D = self.Y.shape
            N_list = np.array(self.mpi_comm.allgather(N))
            N_all = np.sum(N_list)
            Y_all = np.empty((N_all,D)) if self.mpi_comm.rank==root else None
            self.mpi_comm.Gatherv([self.Y, MPI.DOUBLE], [Y_all, (N_list*D, None), MPI.DOUBLE], root=root)
            if self.mpi_comm.rank==root:
                XY = [Y_all]
            for l in self.layers:
                Q = l.X.shape[1]
                X_mean_all =  np.empty((N_all,Q)) if self.mpi_comm.rank==root else None
                self.mpi_comm.Gatherv([l.X.mean.values, MPI.DOUBLE], [X_mean_all, (N_list*Q, None), MPI.DOUBLE], root=root)
                X_var_all =  np.empty((N_all,Q)) if self.mpi_comm.rank==root else None
                self.mpi_comm.Gatherv([l.X.variance.values, MPI.DOUBLE], [X_var_all, (N_list*Q, None), MPI.DOUBLE], root=root)
                if self.mpi_comm.rank==root:
                    XY.append(NormalPosterior(X_mean_all, X_var_all))
            if self.mpi_comm.rank==root: return XY
            else: return None 
開發者ID:SheffieldML,項目名稱:PyDeepGP,代碼行數:27,代碼來源:model.py

示例4: async_fetch_weights_async

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import DOUBLE [as 別名]
def async_fetch_weights_async(self):
        # deprecated
        request_layers = []
        layers_to_update = []
        for layer_idx, layer in enumerate(self.model_recv_buf.recv_buf):
            if self.model_recv_buf.layer_cur_step[layer_idx] < self.cur_step:
                layers_to_update.append(layer_idx)
                req = self.comm.Irecv([self.model_recv_buf.recv_buf[layer_idx], MPI.DOUBLE], source=0, tag=11+layer_idx)
                request_layers.append(req)

        assert (len(layers_to_update) == len(request_layers))
        weights_to_update = []
        for req_idx, req_l in enumerate(request_layers):
            req_l.wait()
            weights = self.model_recv_buf.recv_buf[req_idx]
            weights_to_update.append(weights)
            # we also need to update the layer cur step here:
            self.model_recv_buf.layer_cur_step[req_idx] = self.cur_step
        self.model_update(weights_to_update) 
開發者ID:hwang595,項目名稱:ps_pytorch,代碼行數:21,代碼來源:distributed_worker.py

示例5: _send_grads

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import DOUBLE [as 別名]
def _send_grads(self):
        req_send_check = []
        encode_time_counter_ = 0
        for p_index, p in enumerate(self.network.parameters()):
            if self._device.type == "cuda":
                grad = p.grad.to(torch.device("cpu")).detach().numpy().astype(np.float32)
            else:
                grad = p.grad.detach().numpy().astype(np.float32)
            # wait until grad of last layer shipped to PS
            if len(req_send_check) != 0:
                req_send_check[-1].wait()
            if self._compress_grad == "compress":
                _compressed_grad = g_compress(grad)
                req_isend = self.comm.isend(_compressed_grad, dest=0, tag=88+p_index)
                req_send_check.append(req_isend)
            else:
                req_isend = self.comm.Isend([grad, MPI.DOUBLE], dest=0, tag=88+p_index)
                req_send_check.append(req_isend)
        req_send_check[-1].wait() 
開發者ID:hwang595,項目名稱:ps_pytorch,代碼行數:21,代碼來源:distributed_worker.py

示例6: runParallel

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import DOUBLE [as 別名]
def runParallel():

    from Florence.FiniteElements.Assembly._LowLevelAssembly_ import _LowLevelAssemblyExplicit_Par_
    from Florence import DisplacementFormulation, DisplacementPotentialFormulation

    comm = MPI.Comm.Get_parent()
    size = comm.Get_size()
    rank = comm.Get_rank()

    T_all_size = np.empty(3,'i')
    comm.Bcast(T_all_size, root=0)
    funcs = None
    funcs = comm.bcast(funcs, root=0)

    nnode = T_all_size[0]
    ndim  = T_all_size[1]
    nvar  = T_all_size[2]
    T_all = np.zeros((nnode,nvar),np.float64)

    Eulerx = np.zeros((nnode,ndim),np.float64)
    comm.Bcast([Eulerx, MPI.DOUBLE], root=0)

    Eulerp = np.zeros((nnode),np.float64)
    comm.Bcast([Eulerp, MPI.DOUBLE], root=0)

    for proc in range(size):
        if proc == rank:
            functor = funcs[proc]
            pnodes = funcs[proc].pnodes
            # tt = time()
            T = _LowLevelAssemblyExplicit_Par_(functor.formulation.function_spaces[0],
                functor.formulation, functor.mesh, functor.material, Eulerx[pnodes,:], Eulerp[pnodes])
            T_all[pnodes,:] += T.reshape(pnodes.shape[0],nvar)
            # print(time()-tt)


    comm.Reduce([T_all, MPI.DOUBLE], None, root=0)
    comm.Disconnect() 
開發者ID:romeric,項目名稱:florence,代碼行數:40,代碼來源:MPIParallelExplicitAssembler.py

示例7: numpy_to_MPI_typemap

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import DOUBLE [as 別名]
def numpy_to_MPI_typemap(np_type):
    from mpi4py import MPI
    typemap = {
        np.dtype(np.float64) : MPI.DOUBLE,
        np.dtype(np.float32) : MPI.FLOAT,
        np.dtype(np.int)     : MPI.INT,
        np.dtype(np.int8)    : MPI.CHAR,
        np.dtype(np.uint8)   : MPI.UNSIGNED_CHAR,
        np.dtype(np.int32)   : MPI.INT,
        np.dtype(np.uint32)  : MPI.UNSIGNED_INT,
    }
    return typemap[np_type] 
開發者ID:SheffieldML,項目名稱:PyDeepGP,代碼行數:14,代碼來源:parallel.py

示例8: synchronize_locations

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import DOUBLE [as 別名]
def synchronize_locations(self, start_loc_local, end_loc_local, Debug=False):
      """
      Gathers the scores from all the updated locations, and propagates them across the processes.
      """

      base = int((len(self.scores)/self.scores_per_location) / self.mpi.size)
      leftover = int((len(self.scores)/self.scores_per_location) % self.mpi.size)

      if Debug:
        print("Sync Locs:", self.mpi.rank, base, leftover, len(self.scores), file=sys.stderr)

      sizes = np.ones(self.mpi.size, dtype='i')*base
      sizes[:leftover] += 1
      sizes *= self.scores_per_location
      offsets = np.zeros(self.mpi.size, dtype='i')
      offsets[1:] = np.cumsum(sizes)[:-1]

      assert np.sum(sizes) == len(self.scores)
      assert offsets[-1] + sizes[-1] == len(self.scores)

      # Populate scores array
      scores_start = int(offsets[self.mpi.rank])
      local_scores_size = int(sizes[self.mpi.rank])
      local_scores = self.scores[scores_start:scores_start+local_scores_size].copy()

      if Debug and self.mpi.rank == 0:
        print("start of synchronize_locations MPI call.", file=sys.stderr)
        #print(self.mpi.rank, local_scores, self.scores, sizes, offsets)
      self.mpi.comm.Allgatherv(local_scores, [self.scores, sizes, offsets, MPI.DOUBLE])

      if Debug and self.mpi.rank == 0:
        print("end of synchronize_locations", file=sys.stderr) 
開發者ID:djgroen,項目名稱:flee-release,代碼行數:34,代碼來源:pflee.py

示例9: gather

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import DOUBLE [as 別名]
def gather(self,x,y):
#        if self.myrank==0:
#            print("gather",x.shape,self.sbuff.shape,self.rbuff.shape,self.np,self.mp,self.n1,self.m1)

        for k in range(self.nbtimes):
            self.localcomm.Allgatherv(x.ravel(),
                                  [self.rbuff,self.sizes,self.offsets,MPI.DOUBLE])


            b = self.rbuff.reshape( (self.mp,self.np,self.m,self.n))
            buffertodomain(b,y,self.nh,self.m1,self.n1) 
開發者ID:pvthinker,項目名稱:Fluid2d,代碼行數:13,代碼來源:subdomains.py

示例10: paired_update

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import DOUBLE [as 別名]
def paired_update(comm, previous_encounters_s, Count_sz_local, Count_sz_pair, \
        Count_sz_others, P_local, P_pair):
    
    rank = comm.rank
    comm.isend(rank, dest=MASTER, tag=Msg.PAIRME.value)
    pair_id = comm.recv(source=MASTER, tag=Msg.PAIRED.value)
    
    if pair_id == rank: #Paired with self, do nothing
        return False
    
    elif pair_id < rank:
        comm.Recv([Count_sz_pair, MPI.INT], source=pair_id)
        comm.Recv([P_pair, MPI.DOUBLE], source=pair_id)
        
        comm.Send([Count_sz_local, MPI.INT], dest=pair_id)
        comm.Send([P_local, MPI.DOUBLE], dest=pair_id)
    else:
        comm.Send([Count_sz_local, MPI.INT], dest=pair_id)
        comm.Send([P_local, MPI.DOUBLE], dest=pair_id)
        
        comm.Recv([Count_sz_pair, MPI.INT], source=pair_id)
        comm.Recv([P_pair, MPI.DOUBLE], source=pair_id)

    #Update Counts
    #[:] is to avoid copies of arrays. Make sure we dont lose anything
    N_til_s = previous_encounters_s[pair_id]
    Count_sz_others[:] = Count_sz_others + Count_sz_pair - N_til_s

    N_til_s[:] = Count_sz_pair
    P_local[:] = (P_local + P_pair) / 2.0
    
    return True 
開發者ID:flaviovdf,項目名稱:tribeflow,代碼行數:34,代碼來源:plearn.py

示例11: receive_workload

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import DOUBLE [as 別名]
def receive_workload(comm):
    sizes = np.zeros(6, dtype='i')
    comm.Recv([sizes, MPI.INT], source=MASTER)

    num_lines = sizes[0]
    nz = sizes[1]
    nh = sizes[2]
    ns = sizes[3]
    n_residency_priors = sizes[4]
    mem_size = sizes[5]

    Count_zh = np.zeros(shape=(nz, nh), dtype='i4') 
    Count_sz = np.zeros(shape=(ns, nz), dtype='i4')
    count_h = np.zeros(shape=(nh, ), dtype='i4')
    count_z = np.zeros(shape=(nz, ), dtype='i4')
    
    Dts = np.zeros(shape=(num_lines, mem_size), dtype='f8')
    Trace = np.zeros(shape=(num_lines, 2 + (mem_size + 1)), dtype='i4')

    comm.Recv([Dts, MPI.DOUBLE], source=MASTER)
    comm.Recv([Trace, MPI.INT], source=MASTER)
    priors = np.zeros(2 + n_residency_priors, dtype='f8')
    comm.Recv([priors, MPI.DOUBLE], source=MASTER)
    
    alpha_zh = priors[0]
    beta_zs = priors[1]
    residency_priors = priors[2:]
    kernel_class = comm.recv(source=MASTER)
    P = np.zeros(shape=(nz, n_residency_priors), dtype='f8')
    comm.Recv([P, MPI.DOUBLE], source=MASTER)

    kernel = kernel_class()
    kernel.build(Trace.shape[0], Count_zh.shape[0], residency_priors)
    if n_residency_priors > 0:
        kernel.update_state(P)
    
    return Dts, Trace, Count_zh, Count_sz, \
            count_h, count_z, alpha_zh, beta_zs, kernel 
開發者ID:flaviovdf,項目名稱:tribeflow,代碼行數:40,代碼來源:plearn.py

示例12: work

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import DOUBLE [as 別名]
def work():
    comm = MPI.COMM_WORLD
    rank = comm.rank
    
    #pr = cProfile.Profile()
    #pr.enable()

    while True:
        status = MPI.Status()
        msg = comm.recv(source=MASTER, tag=MPI.ANY_TAG, status=status)
        event = status.Get_tag()

        if event == Msg.LEARN.value:
            comm.isend(rank, dest=MASTER, tag=Msg.STARTED.value)

            num_iter = msg

            Dts, Trace, Count_zh, Count_sz, count_h, count_z, \
                    alpha_zh, beta_zs, kernel = receive_workload(comm)
            fast_populate(Trace, Count_zh, Count_sz, count_h, \
                    count_z)
            sample(Dts, Trace, Count_zh, Count_sz, count_h, \
                    count_z, alpha_zh, beta_zs, kernel, num_iter, \
                    comm)
            
            comm.isend(rank, dest=MASTER, tag=Msg.FINISHED.value)
        elif event == Msg.SENDRESULTS.value:
            comm.Send([np.array(Trace[:, -1], order='C'), MPI.INT], dest=MASTER)
            comm.Send([Count_zh, MPI.INT], dest=MASTER)
            comm.Send([Count_sz, MPI.INT], dest=MASTER)
            comm.Send([count_h, MPI.INT], dest=MASTER)
            comm.Send([count_z, MPI.INT], dest=MASTER)
            comm.Send([kernel.get_state(), MPI.DOUBLE], dest=MASTER)
        elif event == Msg.STOP.value:
            break
        else:
            print('Unknown message received', msg, event, Msg(event))

    #pr.disable()
    #pr.dump_stats('worker-%d.pstats' % rank) 
開發者ID:flaviovdf,項目名稱:tribeflow,代碼行數:42,代碼來源:plearn.py

示例13: dispatch_jobs

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import DOUBLE [as 別名]
def dispatch_jobs(Dts, Trace, Count_zh, Count_sz, count_h, \
        count_z, alpha_zh, beta_zs, kernel, residency_priors, \
        workloads, num_workers, comm):
    
    for worker_id in xrange(1, num_workers + 1):
        idx = workloads[worker_id - 1]
        
        sizes = np.zeros(6, dtype='i')
        sizes[0] = Trace[idx].shape[0] 
        sizes[1] = Count_zh.shape[0]
        sizes[2] = Count_zh.shape[1]
        sizes[3] = Count_sz.shape[0]
        sizes[4] = residency_priors.shape[0]
        sizes[5] = Dts.shape[1]

        comm.Send([sizes, MPI.INT], dest=worker_id)
        comm.Send([Dts[idx], MPI.INT], dest=worker_id)
        comm.Send([Trace[idx], MPI.INT], dest=worker_id)

        priors = np.zeros(2 + residency_priors.shape[0], dtype='f8')
        priors[0] = alpha_zh
        priors[1] = beta_zs
        priors[2:] = residency_priors

        comm.Send([priors, MPI.DOUBLE], dest=worker_id)
        comm.send(kernel.__class__, dest=worker_id)
        comm.Send([kernel.get_state(), MPI.DOUBLE], dest=worker_id) 
開發者ID:flaviovdf,項目名稱:tribeflow,代碼行數:29,代碼來源:plearn.py

示例14: async_fetch_gradient_start

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import DOUBLE [as 別名]
def async_fetch_gradient_start(self):
        '''make gradient fetch requests and return the request list'''
        gradient_fetch_requests = [] # `graident_fetch_request` should have length of #fc_layer*num_grad_to_collect
        for layer_idx, layer in enumerate(self.network.parameters()):
            for k in range(self._num_grad_to_collect):
                if self._compress_grad == 'compress':
                    req = self.comm.irecv(self.grad_accumulator.gradient_aggregator[layer_idx][k], source=k+1, tag=88+layer_idx)
                else:
                    req = self.comm.Irecv([self.grad_accumulator.gradient_aggregator[layer_idx][k], MPI.DOUBLE], source=k+1, tag=88+layer_idx)
                gradient_fetch_requests.append(req)
        return gradient_fetch_requests 
開發者ID:hwang595,項目名稱:ps_pytorch,代碼行數:13,代碼來源:sync_replicas_master_nn.py

示例15: test_dtype_to_mpi

# 需要導入模塊: from mpi4py import MPI [as 別名]
# 或者: from mpi4py.MPI import DOUBLE [as 別名]
def test_dtype_to_mpi(self):
        reload(util)
        assert util.dtype_to_mpi(np.dtype('bool')) == MPI.C_BOOL
        assert util.dtype_to_mpi(np.dtype('int8')) == MPI.INT8_T
        assert util.dtype_to_mpi(np.dtype('uint8')) == MPI.UINT8_T
        assert util.dtype_to_mpi(np.dtype('int16')) == MPI.INT16_T
        assert util.dtype_to_mpi(np.dtype('uint16')) == MPI.UINT16_T
        assert util.dtype_to_mpi(np.dtype('int32')) == MPI.INT32_T
        assert util.dtype_to_mpi(np.dtype('uint32')) == MPI.UINT32_T
        assert util.dtype_to_mpi(np.dtype('int64')) == MPI.INT64_T
        assert util.dtype_to_mpi(np.dtype('uint64')) == MPI.UINT64_T
        assert util.dtype_to_mpi(np.dtype('float32')) == MPI.FLOAT
        assert util.dtype_to_mpi(np.dtype('float64')) == MPI.DOUBLE
        assert util.dtype_to_mpi(np.dtype('complex64')) == MPI.C_FLOAT_COMPLEX
        assert util.dtype_to_mpi(np.dtype('complex128')) == MPI.C_DOUBLE_COMPLEX 
開發者ID:mila-iqia,項目名稱:platoon,代碼行數:17,代碼來源:test_util.py


注:本文中的mpi4py.MPI.DOUBLE屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。