當前位置: 首頁>>代碼示例>>Python>>正文


Python cfg.ANCHOR_RATIOS屬性代碼示例

本文整理匯總了Python中model.utils.config.cfg.ANCHOR_RATIOS屬性的典型用法代碼示例。如果您正苦於以下問題:Python cfg.ANCHOR_RATIOS屬性的具體用法?Python cfg.ANCHOR_RATIOS怎麽用?Python cfg.ANCHOR_RATIOS使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在model.utils.config.cfg的用法示例。


在下文中一共展示了cfg.ANCHOR_RATIOS屬性的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from model.utils.config import cfg [as 別名]
# 或者: from model.utils.config.cfg import ANCHOR_RATIOS [as 別名]
def __init__(self, din):
        super(_RPN_FPN, self).__init__()

        self.din = din  # get depth of input feature map, e.g., 512
        self.anchor_ratios = cfg.ANCHOR_RATIOS
        self.anchor_scales = cfg.ANCHOR_SCALES
        self.feat_stride = cfg.FEAT_STRIDE[0]

        # define the convrelu layers processing input feature map
        self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)

        # define bg/fg classifcation score layer
        # self.nc_score_out = len(self.anchor_scales) * len(self.anchor_ratios) * 2 # 2(bg/fg) * 9 (anchors)
        self.nc_score_out = 1 * len(self.anchor_ratios) * 2 # 2(bg/fg) * 3 (anchor ratios) * 1 (anchor scale)
        self.RPN_cls_score = nn.Conv2d(512, self.nc_score_out, 1, 1, 0)

        # define anchor box offset prediction layer
        # self.nc_bbox_out = len(self.anchor_scales) * len(self.anchor_ratios) * 4 # 4(coords) * 9 (anchors)
        self.nc_bbox_out = 1 * len(self.anchor_ratios) * 4 # 4(coords) * 3 (anchors) * 1 (anchor scale)
        self.RPN_bbox_pred = nn.Conv2d(512, self.nc_bbox_out, 1, 1, 0)

        # define proposal layer
        self.RPN_proposal = _ProposalLayer_FPN(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        # define anchor target layer
        self.RPN_anchor_target = _AnchorTargetLayer_FPN(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        self.rpn_loss_cls = 0
        self.rpn_loss_box = 0 
開發者ID:guoruoqian,項目名稱:cascade-rcnn_Pytorch,代碼行數:31,代碼來源:rpn_fpn.py

示例2: __init__

# 需要導入模塊: from model.utils.config import cfg [as 別名]
# 或者: from model.utils.config.cfg import ANCHOR_RATIOS [as 別名]
def __init__(self, din):
        super(_RPN, self).__init__()
        
        self.din = din  # get depth of input feature map, e.g., 512
        self.anchor_scales = cfg.ANCHOR_SCALES
        self.anchor_ratios = cfg.ANCHOR_RATIOS
        self.feat_stride = cfg.FEAT_STRIDE[0]

        # define the convrelu layers processing input feature map
        self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)

        # define bg/fg classifcation score layer
        self.nc_score_out = len(self.anchor_scales) * len(self.anchor_ratios) * 2 # 2(bg/fg) * 9 (anchors)
        self.RPN_cls_score = nn.Conv2d(512, self.nc_score_out, 1, 1, 0)

        # define anchor box offset prediction layer
        self.nc_bbox_out = len(self.anchor_scales) * len(self.anchor_ratios) * 4 # 4(coords) * 9 (anchors)
        self.RPN_bbox_pred = nn.Conv2d(512, self.nc_bbox_out, 1, 1, 0)

        # define proposal layer
        self.RPN_proposal = _ProposalLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        # define anchor target layer
        self.RPN_anchor_target = _AnchorTargetLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        self.rpn_loss_cls = 0
        self.rpn_loss_box = 0 
開發者ID:Feynman27,項目名稱:pytorch-detect-to-track,代碼行數:29,代碼來源:rpn.py

示例3: __init__

# 需要導入模塊: from model.utils.config import cfg [as 別名]
# 或者: from model.utils.config.cfg import ANCHOR_RATIOS [as 別名]
def __init__(self, din):
        super(_RPN, self).__init__()

        self.din = din  # get depth of input feature map, e.g., 512
        self.anchor_scales = cfg.ANCHOR_SCALES
        self.anchor_ratios = cfg.ANCHOR_RATIOS
        self.feat_stride = cfg.FEAT_STRIDE[0]

        # define the convrelu layers processing input feature map
        self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)

        # define bg/fg classifcation score layer
        self.nc_score_out = len(self.anchor_scales) * len(
            self.anchor_ratios) * 2  # 2(bg/fg) * 9 (anchors)
        self.RPN_cls_score = nn.Conv2d(512, self.nc_score_out, 1, 1, 0)

        # define anchor box offset prediction layer
        self.nc_bbox_out = len(self.anchor_scales) * len(
            self.anchor_ratios) * 4  # 4(coords) * 9 (anchors)
        self.RPN_bbox_pred = nn.Conv2d(512, self.nc_bbox_out, 1, 1, 0)

        # define proposal layer
        self.RPN_proposal = _ProposalLayer(self.feat_stride, self.anchor_scales,
                                           self.anchor_ratios)

        # define anchor target layer
        self.RPN_anchor_target = _AnchorTargetLayer(self.feat_stride,
                                                    self.anchor_scales,
                                                    self.anchor_ratios)

        self.rpn_loss_cls = 0
        self.rpn_loss_box = 0 
開發者ID:ucbdrive,項目名稱:3d-vehicle-tracking,代碼行數:34,代碼來源:rpn.py

示例4: __init__

# 需要導入模塊: from model.utils.config import cfg [as 別名]
# 或者: from model.utils.config.cfg import ANCHOR_RATIOS [as 別名]
def __init__(self, din):
        super(_RPN, self).__init__()

        self.din = din  # get depth of input feature map, e.g., 512
        self.anchor_scales = cfg.ANCHOR_SCALES
        self.anchor_ratios = cfg.ANCHOR_RATIOS
        self.feat_stride = cfg.FEAT_STRIDE[0]

        # define the convrelu layers processing input feature map
        self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)

        # define bg/fg classifcation score layer
        self.nc_score_out = len(self.anchor_scales) * len(self.anchor_ratios) * 2  # 2(bg/fg) * 9 (anchors)
        self.RPN_cls_score = nn.Conv2d(512, self.nc_score_out, 1, 1, 0)

        # define anchor box offset prediction layer
        self.nc_bbox_out = len(self.anchor_scales) * len(self.anchor_ratios) * 4  # 4(coords) * 9 (anchors)
        self.RPN_bbox_pred = nn.Conv2d(512, self.nc_bbox_out, 1, 1, 0)

        # define proposal layer
        self.RPN_proposal = _ProposalLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        # define anchor target layer
        self.RPN_anchor_target = _AnchorTargetLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        self.rpn_loss_cls = 0
        self.rpn_loss_box = 0 
開發者ID:chengsq,項目名稱:pytorch-lighthead,代碼行數:29,代碼來源:rpn.py

示例5: __init__

# 需要導入模塊: from model.utils.config import cfg [as 別名]
# 或者: from model.utils.config.cfg import ANCHOR_RATIOS [as 別名]
def __init__(self, din):
        super(_RPN, self).__init__()
        
        self.din = din  # get depth of input feature map, e.g., 512
        self.anchor_scales = cfg.ANCHOR_SCALES
        self.anchor_ratios = cfg.ANCHOR_RATIOS
        self.feat_stride = cfg.FEAT_STRIDE[0]

        # define the convrelu layers processing input feature map
        # self.mix_Conv = nn.Sequential(
        #         nn.Conv2d(self.din, 512, 3, 1, 1, bias=True),
        #         nn.BatchNorm2d(512),
        #         nn.ReLU(inplace=True)
        #     )
        self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)

        # define bg/fg classifcation score layer
        self.nc_score_out = len(self.anchor_scales) * len(self.anchor_ratios) * 2 # 2(bg/fg) * 9 (anchors)
        self.RPN_cls_score = nn.Conv2d(512, self.nc_score_out, 1, 1, 0)

        # define anchor box offset prediction layer
        self.nc_bbox_out = len(self.anchor_scales) * len(self.anchor_ratios) * 4 # 4(coords) * 9 (anchors)

        self.RPN_bbox_pred = nn.Conv2d(512, self.nc_bbox_out, 1, 1, 0)

        # define proposal layer
        self.RPN_proposal = _ProposalLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        # define anchor target layer
        self.RPN_anchor_target = _AnchorTargetLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        self.rpn_loss_cls = 0
        self.rpn_loss_box = 0 
開發者ID:timy90022,項目名稱:One-Shot-Object-Detection,代碼行數:35,代碼來源:rpn.py

示例6: __init__

# 需要導入模塊: from model.utils.config import cfg [as 別名]
# 或者: from model.utils.config.cfg import ANCHOR_RATIOS [as 別名]
def __init__(self, din):
        super(_RPN, self).__init__()
        
        self.din = din  # get depth of input feature map, e.g., 512
        self.anchor_scales =  [8, 16, 32] #cfg.ANCHOR_SCALES  #[4, 8, 16, 32] #
        self.anchor_ratios = cfg.ANCHOR_RATIOS
        self.feat_stride = cfg.FEAT_STRIDE[0]

        # define the convrelu layers processing input feature map
        self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)

        # define bg/fg classifcation score layer
        self.nc_score_out = len(self.anchor_scales) * len(self.anchor_ratios) * 2 # 2(bg/fg) * 9 (anchors)
        self.RPN_cls_score = nn.Conv2d(512, self.nc_score_out, 1, 1, 0)

        # define anchor box offset prediction layer
        self.nc_bbox_out = len(self.anchor_scales) * len(self.anchor_ratios) * 4 # 4(coords) * 9 (anchors)
        self.RPN_bbox_pred = nn.Conv2d(512, self.nc_bbox_out, 1, 1, 0)

        # define proposal layer
        self.RPN_proposal = _ProposalLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        # define anchor target layer
        self.RPN_anchor_target = _AnchorTargetLayer(self.feat_stride, self.anchor_scales, self.anchor_ratios)

        self.rpn_loss_cls = 0
        self.rpn_loss_box = 0 
開發者ID:TKKim93,項目名稱:DivMatch,代碼行數:29,代碼來源:rpn_origin.py

示例7: __init__

# 需要導入模塊: from model.utils.config import cfg [as 別名]
# 或者: from model.utils.config.cfg import ANCHOR_RATIOS [as 別名]
def __init__(self, din):
        super(_Stereo_RPN, self).__init__()

        self.din = din  # get depth of input feature map, e.g., 512
        self.anchor_ratios = cfg.ANCHOR_RATIOS
        self.feat_stride = cfg.FEAT_STRIDE[0]

        # define the convrelu layers processing input feature map
        self.RPN_Conv = nn.Conv2d(self.din, 512, 3, 1, 1, bias=True)

        # define bg/fg classifcation score layer
        self.nc_score_out = 1 * len(self.anchor_ratios) * 2 # 2(bg/fg) * 3 (anchor ratios) * 1 (anchor scale)
        self.RPN_cls_score = nn.Conv2d(512*2, self.nc_score_out, 1, 1, 0)

        # define anchor box offset prediction layer
        self.nc_bbox_out = 1 * len(self.anchor_ratios) * 6 # 6(coords) * 3 (anchors) * 1 (anchor scale)
        self.RPN_bbox_pred_left_right = nn.Conv2d(512*2, self.nc_bbox_out, 1, 1, 0)

        # define proposal layer
        self.RPN_proposal = _ProposalLayer(self.feat_stride, self.anchor_ratios)

        # define anchor target layer
        self.RPN_anchor_target = _AnchorTargetLayer(self.feat_stride, self.anchor_ratios)

        self.rpn_loss_cls = 0
        self.rpn_loss_box_left_right = 0 
開發者ID:HKUST-Aerial-Robotics,項目名稱:Stereo-RCNN,代碼行數:28,代碼來源:stereo_rpn.py


注:本文中的model.utils.config.cfg.ANCHOR_RATIOS屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。