當前位置: 首頁>>代碼示例>>Python>>正文


Python cfg.POOLING_MODE屬性代碼示例

本文整理匯總了Python中model.config.cfg.POOLING_MODE屬性的典型用法代碼示例。如果您正苦於以下問題:Python cfg.POOLING_MODE屬性的具體用法?Python cfg.POOLING_MODE怎麽用?Python cfg.POOLING_MODE使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在model.config.cfg的用法示例。


在下文中一共展示了cfg.POOLING_MODE屬性的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _predict

# 需要導入模塊: from model.config import cfg [as 別名]
# 或者: from model.config.cfg import POOLING_MODE [as 別名]
def _predict(self, net_conv):  
    # This is just _build_network in tf-faster-rcnn
   # torch.backends.cudnn.benchmark = False
   # net_conv = self._image_to_head()
    
    
    '''
        ROI pooling on SELECTIVE SEARCH boxes
    '''
    if cfg.POOLING_MODE == 'crop':
      pool5 = self._crop_pool_layer(net_conv, self._boxes)
    else:
      pool5 = self._roi_pool_layer(net_conv, self._boxes)

    if self._mode == 'TRAIN':
      torch.backends.cudnn.benchmark = True # benchmark because now the input size are fixed
    fc7 = self._head_to_tail(pool5)

    cls_prob, bbox_prob, fuse_prob, image_prob = self._region_classification(fc7)

#    for k in self._predictions.keys():
#      self._score_summaries[k] = self._predictions[k]
    self._score_summaries['image_prob'] = self._predictions['image_prob']
    #print(id(net_conv))
    return fuse_prob
#    return net_conv, cls_prob, bbox_prob, fuse_prob, image_prob 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:28,代碼來源:network.py

示例2: _predict

# 需要導入模塊: from model.config import cfg [as 別名]
# 或者: from model.config.cfg import POOLING_MODE [as 別名]
def _predict(self):
    # This is just _build_network in tf-faster-rcnn
    torch.backends.cudnn.benchmark = False
    net_conv = self._image_to_head()

    # build the anchors for the image
    if cfg.FPN:
      self._anchor_component_fpn(net_conv)
      rois = self._region_proposal_fpn(net_conv)
      pool5 = self._crop_pool_layer_fpn(net_conv, rois)
      pool5 = pool5.view(pool5.size(0),-1)
    else:
      self._anchor_component(net_conv.size(2), net_conv.size(3))
      rois = self._region_proposal(net_conv)

      if cfg.POOLING_MODE == 'crop':
        pool5 = self._crop_pool_layer(net_conv, rois)
      else:
        pool5 = self._roi_pool_layer(net_conv, rois)

    if self._mode == 'TRAIN':
      torch.backends.cudnn.benchmark = True # benchmark because now the input size are fixed
    fc7 = self._head_to_tail(pool5)

    cls_prob, bbox_pred = self._region_classification(fc7)

    for k in self._predictions.keys():
      self._score_summaries[k] = self._predictions[k]

    return rois, cls_prob, bbox_pred 
開發者ID:yxgeee,項目名稱:pytorch-FPN,代碼行數:32,代碼來源:network.py

示例3: _build_network

# 需要導入模塊: from model.config import cfg [as 別名]
# 或者: from model.config.cfg import POOLING_MODE [as 別名]
def _build_network(self, is_training=True):
    # select initializers
    if cfg.TRAIN.TRUNCATED:
      initializer = tf.truncated_normal_initializer(mean=0.0, stddev=0.01)
      initializer_bbox = tf.truncated_normal_initializer(mean=0.0, stddev=0.001)
    else:
      initializer = tf.random_normal_initializer(mean=0.0, stddev=0.01)
      initializer_bbox = tf.random_normal_initializer(mean=0.0, stddev=0.001)

    net_conv = self._image_to_head(is_training)
    with tf.variable_scope(self._scope, self._scope):
      # build the anchors for the image
      self._anchor_component()
      # region proposal network
      rois = self._region_proposal(net_conv, is_training, initializer)
      # region of interest pooling
      if cfg.POOLING_MODE == 'crop':
        pool5 = self._crop_pool_layer(net_conv, rois, "pool5")
      else:
        raise NotImplementedError

    fc7 = self._head_to_tail(pool5, is_training)
    with tf.variable_scope(self._scope, self._scope):
      # region classification
      cls_prob, bbox_pred = self._region_classification(fc7, is_training, 
                                                        initializer, initializer_bbox)

    self._score_summaries.update(self._predictions)

    return rois, cls_prob, bbox_pred 
開發者ID:endernewton,項目名稱:tf-faster-rcnn,代碼行數:32,代碼來源:network.py


注:本文中的model.config.cfg.POOLING_MODE屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。