當前位置: 首頁>>代碼示例>>Python>>正文


Python mnist.MNIST屬性代碼示例

本文整理匯總了Python中mnist.MNIST屬性的典型用法代碼示例。如果您正苦於以下問題:Python mnist.MNIST屬性的具體用法?Python mnist.MNIST怎麽用?Python mnist.MNIST使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在mnist的用法示例。


在下文中一共展示了mnist.MNIST屬性的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import mnist [as 別名]
# 或者: from mnist import MNIST [as 別名]
def __init__(self, loc='data/raw'):
        """
        Dataloader for the MNIST data. Relies on this library
        https://pypi.python.org/pypi/python-mnist/0.3
        :param loc:
        """
        mndata = MNIST(loc)
        self.data = {}

        # train data
        images, labels = mndata.load_training()
        images = np.array(images)
        labels = np.array(labels).astype(np.int64)

        self.data['X_train'] = self.normalize(images)
        self.data['y_train'] = labels

        # test data
        images, labels = mndata.load_testing()
        images = np.array(images)
        labels = np.array(labels).astype(np.int64)

        self.data['X_test'] = self.normalize(images)
        self.data['y_test'] = labels 
開發者ID:RobRomijnders,項目名稱:bayes_nn,代碼行數:26,代碼來源:data_loader.py

示例2: initialize_parameters

# 需要導入模塊: import mnist [as 別名]
# 或者: from mnist import MNIST [as 別名]
def initialize_parameters():
    mnist_common = mnist.MNIST(mnist.file_path,
        'mnist_params.txt',
        'keras',
        prog='mnist_mlp',
        desc='MNIST example'
    )

    # Initialize parameters
    gParameters = candle.finalize_parameters(mnist_common)
    csv_logger = CSVLogger('{}/params.log'.format(gParameters))

    return gParameters 
開發者ID:ECP-CANDLE,項目名稱:Benchmarks,代碼行數:15,代碼來源:mnist_mlp_candle.py

示例3: initialize_parameters

# 需要導入模塊: import mnist [as 別名]
# 或者: from mnist import MNIST [as 別名]
def initialize_parameters():
    mnist_common = mnist.MNIST(mnist.file_path,
        'mnist_params.txt',
        'keras',
        prog='mnist_cnn',
        desc='MNIST CNN example'
    )

    # Initialize parameters
    gParameters = candle.finalize_parameters(mnist_common)
    csv_logger = CSVLogger('{}/params.log'.format(gParameters))

    return gParameters 
開發者ID:ECP-CANDLE,項目名稱:Benchmarks,代碼行數:15,代碼來源:mnist_cnn_candle.py

示例4: __init__

# 需要導入模塊: import mnist [as 別名]
# 或者: from mnist import MNIST [as 別名]
def __init__(self, prob):
        """load mnist dataset"""
        print("Loading MNIST dataset...")
        mndata = MNIST('./data/mnist/')

        mnist_train_images, mnist_train_labels = mndata.load_training()

        mnist_train_images = np.asarray(mnist_train_images)
        mnist_train_images = normalize(mnist_train_images)
        mnist_train_labels = np.asarray(mnist_train_labels)

        """divide datset by label"""
        print("Dividing dataset...")
        sorted_train_images = []
        sorted_train_labels = []        

        for label in range(0,10):
            train_index = np.where(mnist_train_labels == label)
            sorted_train_images.append(mnist_train_images[train_index[0]])
            sorted_train_labels.append(np.asarray([label] * len(train_index[0])))
            
        """add salt_and_pepper noise"""
        print("Adding salt and pepper noise...")
        shape = 28 * 28 ##image shape of mnist
        self.train_images = []
        self.train_labels = sorted_train_labels
        for images in sorted_train_images:
            noise_images = []
            for image in images:
                noise_image = salt_and_pepper(image, prob, shape)
                noise_images.append(noise_image)
            self.train_images.append(noise_images) 
開發者ID:kimhc6028,項目名稱:pathnet-pytorch,代碼行數:34,代碼來源:mnist_dataset.py

示例5: run

# 需要導入模塊: import mnist [as 別名]
# 或者: from mnist import MNIST [as 別名]
def run():
  TorchModel = PyTorchHelpers.load_lua_class('torch_model.lua', 'TorchModel')
  torchModel = TorchModel(backend, 28, 10)

  mndata = MNIST('../../data/mnist')
  imagesList, labelsList = mndata.load_training()
  labels = np.array(labelsList, dtype=np.uint8)
  images = np.array(imagesList, dtype=np.float32)
  labels += 1  # since torch/lua labels are 1-based
  N = labels.shape[0]
  print('loaded mnist training data')

  if numTrain > 0:
    N = min(N, numTrain)
  print('numExamples N', N)
  numBatches = N // batchSize
  for epoch in range(numEpochs):
    epochLoss = 0
    epochNumRight = 0
    for b in range(numBatches):
      res = torchModel.trainBatch(
        learningRate,
        images[b * batchSize:(b+1) * batchSize],
        labels[b * batchSize:(b+1) * batchSize])
#      print('res', res)
      numRight = res['numRight']
      loss = res['loss']
      epochNumRight += numRight
      epochLoss += loss
      print('epoch ' + str(epoch) + ' batch ' + str(b) + ' accuracy: ' + str(numRight * 100.0 / batchSize) + '%')
    print('epoch ' + str(epoch) + ' accuracy: ' + str(epochNumRight * 100.0 / N) + '%')

  print('finished training')
  print('loading test data...')
  imagesList, labelsList = mndata.load_testing()
  labels = np.array(labelsList, dtype=np.uint8)
  images = np.array(imagesList, dtype=np.float32)
  labels += 1  # since torch/lua labels are 1-based
  N = labels.shape[0]
  print('loaded mnist testing data')

  numBatches = N // batchSize
  epochLoss = 0
  epochNumRight = 0
  for b in range(numBatches):
    predictions = torchModel.predict(images[b * batchSize:(b+1) * batchSize]).asNumpyTensor().reshape(batchSize)
    labelsBatch = labels[b * batchSize:(b+1) * batchSize]
    numRight = (predictions == labelsBatch).sum()
    epochNumRight += numRight
  print('test results: accuracy: ' + str(epochNumRight * 100.0 / N) + '%') 
開發者ID:hughperkins,項目名稱:pytorch,代碼行數:52,代碼來源:runner.py


注:本文中的mnist.MNIST屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。