當前位置: 首頁>>代碼示例>>Python>>正文


Python mlp.MLP屬性代碼示例

本文整理匯總了Python中mlp.MLP屬性的典型用法代碼示例。如果您正苦於以下問題:Python mlp.MLP屬性的具體用法?Python mlp.MLP怎麽用?Python mlp.MLP使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在mlp的用法示例。


在下文中一共展示了mlp.MLP屬性的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: print_utility

# 需要導入模塊: import mlp [as 別名]
# 或者: from mlp import MLP [as 別名]
def print_utility(my_mlp, tot_rows, tot_cols, decimal=2, flip=True):
    '''Print on terminal the utility matrix of a discrete state space
       having states defined by tuples: (0,0); (0,1); (0,2) ...

    @param my_mlp an MLP object having single output
    @param tot_rows total number of rows
    @param tot_cols total number of columns
    @param decimal is the precision of the printing (default: 2 decimal places)
    @param flip boolean which defines if vertical flip is applied (default: True)
    '''
    utility_matrix = np.zeros((tot_rows, tot_cols))
    for row in range(tot_rows):
        for col in range(tot_cols):
            x = np.array([row, col], dtype=np.float32)
            utility_matrix[row,col] = my_mlp.forward(x)
    np.set_printoptions(precision=decimal) #set print precision of numpy
    if flip:
        print(np.flipud(utility_matrix))
    else:
        print(utility_matrix)
    np.set_printoptions(precision=8) #reset to default 
開發者ID:mpatacchiola,項目名稱:dissecting-reinforcement-learning,代碼行數:23,代碼來源:xor_mlp_td.py

示例2: __init__

# 需要導入模塊: import mlp [as 別名]
# 或者: from mlp import MLP [as 別名]
def __init__(self, 
                 input_shape, 
                 output_size, 
                 hidden_sizes=(32, 32),
                 hidden_nonlinearity=tf.nn.relu, 
                 output_nonlinearity=tf.nn.tanh):
        
        self.input_shape = input_shape
        self.output_size = output_size
        self.locals = locals()
        
        with tf.variable_scope("policy"):
            self.mlp = MLP(input_shape=input_shape, 
                           output_size=output_size, 
                           hidden_sizes=hidden_sizes, 
                           hidden_nonlinearity=hidden_nonlinearity, 
                           output_nonlinearity=output_nonlinearity)
        
        self.x = self.mlp.get_input_layer()
        self.y = self.mlp.get_output_layer() 
開發者ID:PacktPublishing,項目名稱:Python-Reinforcement-Learning-Projects,代碼行數:22,代碼來源:deterministic_mlp.py

示例3: main

# 需要導入模塊: import mlp [as 別名]
# 或者: from mlp import MLP [as 別名]
def main():

    env = init_env()
    my_mlp = MLP(tot_inputs=2, tot_hidden=2, tot_outputs=1, activation="tanh")
    learning_rate = 0.1
    gamma = 0.9
    tot_epoch = 10001
    print_epoch = 100

    for epoch in range(tot_epoch):
        #XOR-world episode
        observation = env.reset(exploring_starts=True)
        #The episode starts here
        for step in range(1000):
            action = np.random.randint(0,4)
            new_observation, reward, done = env.step(action) #move in the world and get the state and reward
            my_mlp, error = update(my_mlp, new_observation, reward, learning_rate, gamma, done)
            observation = new_observation
            if done: break
        if(epoch % print_epoch == 0 and epoch!=0):
            print("")
            print("Epoch: " + str(epoch+1))
            print("Tot steps: " + str(step))
            print("Error: " + str(error))

            print_utility(my_mlp, tot_rows=5, tot_cols=5)
    print("Generating plot, please wait...")
    subplot(my_mlp, world_size=5, filename="xor_planes.png")
    print("Done!") 
開發者ID:mpatacchiola,項目名稱:dissecting-reinforcement-learning,代碼行數:31,代碼來源:xor_mlp_td.py

示例4: __init__

# 需要導入模塊: import mlp [as 別名]
# 或者: from mlp import MLP [as 別名]
def __init__(self,
                 input_shape, 
                 hidden_sizes=(32, 32),
                 hidden_nonlinearity=tf.nn.tanh,
                 learning_rate=3e-4,
                 batch_size=1000):
        
        self.input_shape = input_shape
        self.hidden_sizes = hidden_sizes
        self.learning_rate = learning_rate
        self.batch_size = batch_size
        self.sess = None
        
        with tf.variable_scope("mlp_fitting"):
            self.mlp = MLP(input_shape=input_shape, 
                           output_size=1, 
                           hidden_sizes=hidden_sizes, 
                           hidden_nonlinearity=hidden_nonlinearity, 
                           output_nonlinearity=None,
                           name='value')
            
            self.x = self.mlp.get_input_layer()
            self.y = tf.reshape(self.mlp.get_output_layer(), shape=(-1,))
            self.params = self.mlp.get_params()
            
            self.z = tf.placeholder(dtype=tf.float32, shape=(None,), name='z')
            loss = tf.reduce_mean(tf.square(self.z - self.y))
            self.train_op = tf.train.AdamOptimizer(self.learning_rate).minimize(loss, var_list=self.params) 
開發者ID:PacktPublishing,項目名稱:Python-Reinforcement-Learning-Projects,代碼行數:30,代碼來源:mlp_fitting.py

示例5: __init__

# 需要導入模塊: import mlp [as 別名]
# 或者: from mlp import MLP [as 別名]
def __init__(self, 
                 input_shape, 
                 output_size, 
                 hidden_sizes=(32, 32),
                 hidden_nonlinearity=tf.nn.tanh):
        
        self.input_shape = input_shape
        self.output_size = output_size
        self.hidden_sizes = hidden_sizes
        self.locals = locals()
        
        self.distribution = Categorical(output_size)
        self.params = []
        
        with tf.variable_scope("policy"):
            # Mean network
            self.prob_mlp = MLP(input_shape=input_shape, 
                                output_size=output_size, 
                                hidden_sizes=hidden_sizes, 
                                hidden_nonlinearity=hidden_nonlinearity, 
                                output_nonlinearity=tf.nn.softmax,
                                name='prob')
            
            self.x = self.prob_mlp.get_input_layer()
            self.prob = self.prob_mlp.get_output_layer()
            self.params += self.prob_mlp.get_params() 
開發者ID:PacktPublishing,項目名稱:Python-Reinforcement-Learning-Projects,代碼行數:28,代碼來源:categorical_mlp.py

示例6: __init__

# 需要導入模塊: import mlp [as 別名]
# 或者: from mlp import MLP [as 別名]
def __init__(self,
                 mlp_hidden_dim,
                 num_mlp_layers,
                 num_classes,
                 embeddings,
                 gpu=False):
        super(DanClassifier, self).__init__()
        self.to_cuda = to_cuda(gpu)
        self.embeddings = embeddings
        self.word_dim = len(embeddings[0])
        self.mlp = MLP(self.word_dim,
                       mlp_hidden_dim,
                       num_mlp_layers,
                       num_classes)
        print("# params:", sum(p.nelement() for p in self.parameters())) 
開發者ID:Noahs-ARK,項目名稱:soft_patterns,代碼行數:17,代碼來源:dan.py

示例7: forward

# 需要導入模塊: import mlp [as 別名]
# 或者: from mlp import MLP [as 別名]
def forward(self, batch, debug=0, dropout=None):
        """ Average all word vectors in the doc, and feed into an MLP """
        docs_vectors = [
            torch.index_select(batch.embeddings_matrix, 1, doc)
            for doc in batch.docs
        ]

        # don't need to mask docs because padding vector is 0, won't change sum
        word_vector_sum = torch.sum(torch.stack(docs_vectors), dim=2)
        word_vector_avg = \
            torch.div(word_vector_sum.t(),
                      torch.autograd.Variable(batch.doc_lens.float())).t()

        return self.mlp.forward(word_vector_avg) 
開發者ID:Noahs-ARK,項目名稱:soft_patterns,代碼行數:16,代碼來源:dan.py

示例8: __init__

# 需要導入模塊: import mlp [as 別名]
# 或者: from mlp import MLP [as 別名]
def __init__(self,
                 input_dim,
                 hidden_dim,
                 num_layers,
                 output_dim,
                 window_size,
                 gpu=False):
        super(Cnn, self).__init__()
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.num_layers = num_layers
        self.output_dim = output_dim
        self.window_size = window_size
        self.gpu = gpu
        if not num_layers <= 1:
            self.cnn = \
                Conv1d(input_dim,
                       hidden_dim,
                       window_size)
            self.mlp = \
                MLP(hidden_dim,
                    hidden_dim,
                    num_layers - 1,
                    output_dim)
        else:
            self.cnn = \
                Conv1d(input_dim,
                       output_dim,
                       window_size)
            self.mlp = None 
開發者ID:Noahs-ARK,項目名稱:soft_patterns,代碼行數:32,代碼來源:cnn.py

示例9: cnn_arg_parser

# 需要導入模塊: import mlp [as 別名]
# 或者: from mlp import MLP [as 別名]
def cnn_arg_parser():
    """ CLI args related to the MLP module """
    p = ArgumentParser(add_help=False)
    # we're running out of letters!
    p.add_argument("-c", "--cnn_hidden_dim", help="CNN hidden dimension", type=int, default=200)
    p.add_argument("-x", "--num_cnn_layers", help="Number of MLP layers", type=int, default=2)
    p.add_argument("-z", "--window_size", help="Size of window of CNN", type=int, default=3)
    p.add_argument("-o", "--pooling", help="Type of pooling to use [max, sum, avg]", type=str, default="max")
    return p 
開發者ID:Noahs-ARK,項目名稱:soft_patterns,代碼行數:11,代碼來源:cnn.py

示例10: __init__

# 需要導入模塊: import mlp [as 別名]
# 或者: from mlp import MLP [as 別名]
def __init__(self, opt):
        super(ABC, self).__init__()
        self.vid_flag = "imagenet" in opt.input_streams
        self.sub_flag = "sub" in opt.input_streams
        self.vcpt_flag = "vcpt" in opt.input_streams
        hidden_size_1 = opt.hsz1
        hidden_size_2 = opt.hsz2
        n_layers_cls = opt.n_layers_cls
        vid_feat_size = opt.vid_feat_size
        embedding_size = opt.embedding_size
        vocab_size = opt.vocab_size

        self.embedding = nn.Embedding(vocab_size, embedding_size)
        self.bidaf = BidafAttn(hidden_size_1 * 3, method="dot")  # no parameter for dot
        self.lstm_raw = RNNEncoder(300, hidden_size_1, bidirectional=True, dropout_p=0, n_layers=1, rnn_type="lstm")

        if self.vid_flag:
            print("activate video stream")
            self.video_fc = nn.Sequential(
                nn.Dropout(0.5),
                nn.Linear(vid_feat_size, embedding_size),
                nn.Tanh(),
            )
            self.lstm_mature_vid = RNNEncoder(hidden_size_1 * 2 * 5, hidden_size_2, bidirectional=True,
                                              dropout_p=0, n_layers=1, rnn_type="lstm")
            self.classifier_vid = MLP(hidden_size_2*2, 1, 500, n_layers_cls)

        if self.sub_flag:
            print("activate sub stream")
            self.lstm_mature_sub = RNNEncoder(hidden_size_1 * 2 * 5, hidden_size_2, bidirectional=True,
                                              dropout_p=0, n_layers=1, rnn_type="lstm")
            self.classifier_sub = MLP(hidden_size_2*2, 1, 500, n_layers_cls)

        if self.vcpt_flag:
            print("activate vcpt stream")
            self.lstm_mature_vcpt = RNNEncoder(hidden_size_1 * 2 * 5, hidden_size_2, bidirectional=True,
                                               dropout_p=0, n_layers=1, rnn_type="lstm")
            self.classifier_vcpt = MLP(hidden_size_2*2, 1, 500, n_layers_cls) 
開發者ID:jayleicn,項目名稱:TVQA,代碼行數:40,代碼來源:tvqa_abc.py

示例11: declare_parameters

# 需要導入模塊: import mlp [as 別名]
# 或者: from mlp import MLP [as 別名]
def declare_parameters(self):
        opts = self.opts
        with tf.variable_scope('params') as scope:
            self.L_init = tf.get_variable(name="L_init", initializer=tf.random_normal([1, self.opts.d]))
            self.C_init = tf.get_variable(name="C_init", initializer=tf.random_normal([1, self.opts.d]))

            self.LC_msg = MLP(opts, opts.d, repeat_end(opts.d, opts.n_msg_layers, opts.d), name=("LC_msg"))
            self.CL_msg = MLP(opts, opts.d, repeat_end(opts.d, opts.n_msg_layers, opts.d), name=("CL_msg"))

            self.L_update = tf.contrib.rnn.LayerNormBasicLSTMCell(self.opts.d, activation=decode_transfer_fn(opts.lstm_transfer_fn))
            self.C_update = tf.contrib.rnn.LayerNormBasicLSTMCell(self.opts.d, activation=decode_transfer_fn(opts.lstm_transfer_fn))

            self.L_vote = MLP(opts, opts.d, repeat_end(opts.d, opts.n_vote_layers, 1), name=("L_vote"))
            self.vote_bias = tf.get_variable(name="vote_bias", shape=[], initializer=tf.zeros_initializer()) 
開發者ID:dselsam,項目名稱:neurosat,代碼行數:16,代碼來源:neurosat.py

示例12: run_experiment

# 需要導入模塊: import mlp [as 別名]
# 或者: from mlp import MLP [as 別名]
def run_experiment(x_train, y_train, x_valid, y_valid, embeddings, _layers):
    # Model parameters
    model_name = "mlp"
    layers = _layers

    # Training parameters
    learning_rate = 1e-3  # learning rate
    batch_size = 64  # batch size
    num_epochs = args.epochs  # no. of training epochs

    # Regularization parameters
    dropout_keep_prob = 0.5  # dropout keep probability
    l2_reg_lambda = 0.0  # L2 regularization lambda

    # Training
    # ==================================================

    with tf.Graph().as_default():
        tf.set_random_seed(42)  # set random seed for consistent initialization(s)

        session_conf = tf.ConfigProto(allow_soft_placement=True,
                                      log_device_placement=False)
        sess = tf.Session(config=session_conf)

        with sess.as_default():
            # Init model
            mlp = MLP(vocab_size=len(train.vocab),
                      num_classes=len(train.class_names),
                      layers=layers,
                      l2_reg_lambda=l2_reg_lambda)

            # Convert sparse matrices to arrays
            x_train = x_train.toarray()
            x_valid = x_valid.toarray()

            # Output directory for models and summaries
            timestamp = str(int(time.time()))
            out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", args.dataset, model_name,
                                                   timestamp))

            # Train and test model
            max_accuracy = train_and_test(sess, mlp, x_train, y_train, x_valid, y_valid, learning_rate,
                                          batch_size, num_epochs, dropout_keep_prob, out_dir)

            return timestamp, max_accuracy


# Data Preparation
# ================================================== 
開發者ID:SuyashLakhotia,項目名稱:TextCategorization,代碼行數:51,代碼來源:grid_search_mlp.py

示例13: forward

# 需要導入模塊: import mlp [as 別名]
# 或者: from mlp import MLP [as 別名]
def forward(self, batch, debug=0, dropout=None):
        docs = batch.docs
        doc_lens = batch.doc_lens
        b = len(docs)
        max_doc_len = max(list(doc_lens))
        docs_vectors = \
            torch.stack(
                [
                    torch.index_select(batch.embeddings_matrix, 1, doc)
                    for doc in docs
                ],
                dim=0
            )
        # right pad, so docs are at least as long as self.window_size
        doc_lens = [max(self.window_size, l) for l in doc_lens]
        if max_doc_len < self.window_size:
            print("max doc length {} is smaller than window size {}".format(max_doc_len, self.window_size))
            docs_vectors = \
                torch.cat(
                    (docs_vectors, torch.zeros(b, self.window_size - max_doc_len)),
                    dim=1
                )
            max_doc_len = self.window_size
        cnn_outs = self.cnn.forward(docs_vectors)  # size: (b, hidden_dim, max_doc_len - window_size + 1)
        num_windows_per_doc = cnn_outs.size()[2]
        assert(num_windows_per_doc == max_doc_len - self.window_size + 1)

        if dropout is not None:
            cnn_outs = dropout(cnn_outs)

        if self.num_layers <= 1:
            result = cnn_outs.permute(2, 0, 1)
        else:
            # reshape so all windows can be passed into MLP
            cnn_outs = \
                cnn_outs.transpose(1, 2).contiguous().view(b * num_windows_per_doc, self.hidden_dim)
            # run MLP on all windows
            cnn_outs = relu(cnn_outs)
            mlp_outs = self.mlp.forward(cnn_outs)
            # size: (max_doc_len - window_size + 1, b, hidden_dim)
            result = mlp_outs.view(b, num_windows_per_doc, self.hidden_dim).transpose(0, 1)
        lengths = [max(0, l - self.window_size + 1) for l in doc_lens]
        # pack to get rid of the parts that are past the end of the doc
        return pack_padded_sequence(
            result,
            lengths=lengths
        ) 
開發者ID:Noahs-ARK,項目名稱:soft_patterns,代碼行數:49,代碼來源:cnn.py


注:本文中的mlp.MLP屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。