當前位置: 首頁>>代碼示例>>Python>>正文


Python optimizers.SGD屬性代碼示例

本文整理匯總了Python中keras.optimizers.SGD屬性的典型用法代碼示例。如果您正苦於以下問題:Python optimizers.SGD屬性的具體用法?Python optimizers.SGD怎麽用?Python optimizers.SGD使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在keras.optimizers的用法示例。


在下文中一共展示了optimizers.SGD屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_model

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import SGD [as 別名]
def build_model(config):
    """Builds the cnn."""
    params = config.model_arch
    get_model = getattr(models, 'get_model_'+str(params['architecture']))
    model = get_model(params)
    #model = model_kenun.build_convnet_model(params)
    # Learning setup
    t_params = config.training_params
    sgd = SGD(lr=t_params["learning_rate"], decay=t_params["decay"],
              momentum=t_params["momentum"], nesterov=t_params["nesterov"])
    adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
    optimizer = eval(t_params['optimizer'])
    metrics = ['mean_squared_error']
    if config.model_arch["final_activation"] == 'softmax':
        metrics.append('categorical_accuracy')
    if t_params['loss_func'] == 'cosine':
        loss_func = eval(t_params['loss_func'])
    else:
        loss_func = t_params['loss_func']
    model.compile(loss=loss_func, optimizer=optimizer,metrics=metrics)

    return model 
開發者ID:sergiooramas,項目名稱:tartarus,代碼行數:24,代碼來源:train.py

示例2: nn_model

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import SGD [as 別名]
def nn_model():
    (x_train, y_train), _ = mnist.load_data()
    # 歸一化
    x_train = x_train.reshape(x_train.shape[0], -1) / 255.
    # one-hot
    y_train = np_utils.to_categorical(y=y_train, num_classes=10)
    # constant(value=1.)自定義常數,constant(value=1.)===one()
    # 創建模型:輸入784個神經元,輸出10個神經元
    model = Sequential([
        Dense(units=200, input_dim=784, bias_initializer=constant(value=1.), activation=tanh),
        Dense(units=100, bias_initializer=one(), activation=tanh),
        Dense(units=10, bias_initializer=one(), activation=softmax),
    ])

    opt = SGD(lr=0.2, clipnorm=1.)  # 優化器
    model.compile(optimizer=opt, loss=categorical_crossentropy, metrics=['acc', 'mae'])  # 編譯
    model.fit(x_train, y_train, batch_size=64, epochs=20, callbacks=[RemoteMonitor()])
    model_save(model, './model.h5') 
開發者ID:jtyoui,項目名稱:Jtyoui,代碼行數:20,代碼來源:HandWritingRecognition.py

示例3: __init__

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import SGD [as 別名]
def __init__(self, architecture_file=None, weight_file=None, optimizer=None):
        # Generate mapping for softmax layer to characters
        output_str = '0123456789abcdefghijklmnopqrstuvwxyz '
        self.output = [x for x in output_str]
        self.L = len(self.output)

        # Load model and saved weights
        from keras.models import model_from_json
        if architecture_file is None:
            self.model = model_from_json(open('char2_architecture.json').read())
        else:
            self.model = model_from_json(open(architecture_file).read())

        if weight_file is None:
            self.model.load_weights('char2_weights.h5')
        else:
            self.model.load_weights(weight_file)

        if optimizer is None:
            from keras.optimizers import SGD
            optimizer = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
        self.model.compile(loss='categorical_crossentropy', optimizer=optimizer) 
開發者ID:mathDR,項目名稱:reading-text-in-the-wild,代碼行數:24,代碼來源:use_charnet.py

示例4: _build

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import SGD [as 別名]
def _build(self):
        # the model that will be trained
        rnn_x = Input(shape=(None, Z_DIM + ACTION_DIM))
        lstm = LSTM(HIDDEN_UNITS, return_sequences=True, return_state=True)

        lstm_output, _, _ = lstm(rnn_x)
        mdn = Dense(Z_DIM)(lstm_output)

        rnn = Model(rnn_x, mdn)

        # the model used during prediction
        state_input_h = Input(shape=(HIDDEN_UNITS,))
        state_input_c = Input(shape=(HIDDEN_UNITS,))
        state_inputs = [state_input_h, state_input_c]
        
        _, state_h, state_c = lstm(rnn_x, initial_state=state_inputs)
        forward = Model([rnn_x] + state_inputs, [state_h, state_c])

        optimizer = Adam(lr=0.0001)
        # optimizer = SGD(lr=0.0001, decay=1e-4, momentum=0.9, nesterov=True)
        rnn.compile(loss='mean_squared_error', optimizer=optimizer)

        return [rnn, forward] 
開發者ID:marooncn,項目名稱:navbot,代碼行數:25,代碼來源:RNN.py

示例5: _demo_heatmap_script

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import SGD [as 別名]
def _demo_heatmap_script():
    """
    Here is a script to compute the heatmap of the dog synsets.
    We find the synsets corresponding to dogs on ImageNet website
    """
    im = preprocess_image_batch(['examples/dog.jpg'], color_mode='rgb')

    # Test pretrained model
    sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
    model = convnet('alexnet', weights_path='weights/alexnet_weights.h5', heatmap=True)
    model.compile(optimizer=sgd, loss='mse')

    out = model.predict(im)

    s = 'n02084071'
    # Most of the synsets are not in the subset of the synsets used in ImageNet recognition task.
    ids = np.array([id_ for id_ in synset_to_dfs_ids(s) if id_ is not None])
    heatmap = out[0, ids, :, :].sum(axis=0)
    return heatmap 
開發者ID:heuritech,項目名稱:convnets-keras,代碼行數:21,代碼來源:convnets.py

示例6: __init__

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import SGD [as 別名]
def __init__(self, model_inputs=[],model_outputs=[],lambda_cycle=10.0,lambda_id=1.0):
        self.OPTIMIZER = SGD(lr=2e-4,nesterov=True)

        self.inputs = model_inputs
        self.outputs = model_outputs
        self.gan_model = Model(self.inputs,self.outputs)
        self.OPTIMIZER = Adam(lr=2e-4, beta_1=0.5)
        self.gan_model.compile(loss=['mse', 'mse',
                                    'mae', 'mae',
                                    'mae', 'mae'],
                            loss_weights=[  1, 1,
                                            lambda_cycle, lambda_cycle,
                                            lambda_id, lambda_id ],
                            optimizer=self.OPTIMIZER)
        # self.save_model()
        self.summary() 
開發者ID:PacktPublishing,項目名稱:Generative-Adversarial-Networks-Cookbook,代碼行數:18,代碼來源:gan.py

示例7: test_lstm

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import SGD [as 別名]
def test_lstm(self):
        x_train = np.random.random((100, 100, 100))
        y_train = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
        x_test = np.random.random((20, 100, 100))
        y_test = keras.utils.to_categorical(np.random.randint(10, size=(20, 1)), num_classes=10)

        sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)

        model = Sequential()
        model.add(LSTM(32, return_sequences=True, input_shape=(100, 100)))
        model.add(Flatten())
        model.add(Dense(10, activation='softmax'))


        model.compile(loss='categorical_crossentropy', optimizer=sgd)
        model.fit(x_train, y_train, batch_size=32, epochs=1)
        model.evaluate(x_test, y_test, batch_size=32) 
開發者ID:Kaggle,項目名稱:docker-python,代碼行數:19,代碼來源:test_keras.py

示例8: __init__

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import SGD [as 別名]
def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        with graph.as_default():
            if sess is not None:
                set_session(sess)
            inp = None
            output = None
            if self.shared_network is None:
                inp = Input((self.input_dim,))
                output = self.get_network_head(inp).output
            else:
                inp = self.shared_network.input
                output = self.shared_network.output
            output = Dense(
                self.output_dim, activation=self.activation, 
                kernel_initializer='random_normal')(output)
            self.model = Model(inp, output)
            self.model.compile(
                optimizer=SGD(lr=self.lr), loss=self.loss) 
開發者ID:quantylab,項目名稱:rltrader,代碼行數:21,代碼來源:networks.py

示例9: cnn_model

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import SGD [as 別名]
def cnn_model():
	num_of_classes = get_num_of_classes()
	model = Sequential()
	model.add(Conv2D(16, (2,2), input_shape=(image_x, image_y, 1), activation='relu'))
	model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'))
	model.add(Conv2D(32, (3,3), activation='relu'))
	model.add(MaxPooling2D(pool_size=(3, 3), strides=(3, 3), padding='same'))
	model.add(Conv2D(64, (5,5), activation='relu'))
	model.add(MaxPooling2D(pool_size=(5, 5), strides=(5, 5), padding='same'))
	model.add(Flatten())
	model.add(Dense(128, activation='relu'))
	model.add(Dropout(0.2))
	model.add(Dense(num_of_classes, activation='softmax'))
	sgd = optimizers.SGD(lr=1e-2)
	model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
	filepath="cnn_model_keras2.h5"
	checkpoint1 = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
	callbacks_list = [checkpoint1]
	#from keras.utils import plot_model
	#plot_model(model, to_file='model.png', show_shapes=True)
	return model, callbacks_list 
開發者ID:harshbg,項目名稱:Sign-Language-Interpreter-using-Deep-Learning,代碼行數:23,代碼來源:cnn_model_train.py

示例10: cnn

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import SGD [as 別名]
def cnn(trn_set, tst_set):
    trn_x, trn_y = trn_set
    trn_y = np.squeeze(trn_y, axis=2)
    tst_x, tst_y = tst_set
    tst_y = np.squeeze(tst_y, axis=2)

    model = Sequential()

    model.add(Convolution2D(2, 5, 5, activation='sigmoid', input_shape=(1, 28, 28)))
    model.add(MaxPooling2D(pool_size=(3, 3)))
    model.add(Flatten())
    model.add(Dense(10, activation='softmax'))

    model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.1))
    return model, trn_x, trn_y, tst_x, tst_y

################################################################################ 
開發者ID:integeruser,項目名稱:MNIST-cnn,代碼行數:19,代碼來源:train_and_save.py

示例11: get_optimizer

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import SGD [as 別名]
def get_optimizer(args):

	clipvalue = 0
	clipnorm = 10

	if args.algorithm == 'rmsprop':
		optimizer = opt.RMSprop(lr=0.001, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
	elif args.algorithm == 'sgd':
		optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue)
	elif args.algorithm == 'adagrad':
		optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
	elif args.algorithm == 'adadelta':
		optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
	elif args.algorithm == 'adam':
		optimizer = opt.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue)
	elif args.algorithm == 'adamax':
		optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue)
	
	return optimizer 
開發者ID:madrugado,項目名稱:Attention-Based-Aspect-Extraction,代碼行數:21,代碼來源:optimizers.py

示例12: _fine_tuning

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import SGD [as 別名]
def _fine_tuning(self):
        self.freeze_top_layers()

        self.model.compile(
            loss='categorical_crossentropy',
            optimizer=SGD(lr=1e-4, decay=1e-6, momentum=0.9, nesterov=True),
            metrics=['accuracy'])

        self.model.fit_generator(
            self.get_train_datagen(rotation_range=30.,
                                   shear_range=0.2,
                                   zoom_range=0.2,
                                   horizontal_flip=True,
                                   preprocessing_function=self.preprocess_input),
            samples_per_epoch=config.nb_train_samples,
            nb_epoch=self.nb_epoch,
            validation_data=self.get_validation_datagen(preprocessing_function=self.preprocess_input),
            nb_val_samples=config.nb_validation_samples,
            callbacks=self.get_callbacks(config.get_fine_tuned_weights_path(), patience=self.fine_tuning_patience),
            class_weight=self.class_weight)

        self.model.save(config.get_model_path()) 
開發者ID:Arsey,項目名稱:keras-transfer-learning-for-oxford102,代碼行數:24,代碼來源:inception_v3.py

示例13: train

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import SGD [as 別名]
def train(n_labeled_data):
    model = create_cnn()
    
    pseudo = PseudoCallback(model, n_labeled_data, min(256, n_labeled_data))
    model.compile(SGD(1e-2, 0.9), loss=pseudo.loss_function, metrics=[pseudo.accuracy])

    if not os.path.exists("result_pseudo_trans_mobile"):
        os.mkdir("result_pseudo_trans_mobile")

    hist = model.fit_generator(pseudo.train_generator(), steps_per_epoch=pseudo.train_steps_per_epoch,
                               validation_data=pseudo.test_generator(), callbacks=[pseudo],
                               validation_steps=pseudo.test_stepes_per_epoch, epochs=100).history
    hist["labeled_accuracy"] = pseudo.labeled_accuracy
    hist["unlabeled_accuracy"] = pseudo.unlabeled_accuracy

    with open(f"result_pseudo_trans_mobile/history_{n_labeled_data:05}.dat", "wb") as fp:
        pickle.dump(hist, fp) 
開發者ID:koshian2,項目名稱:Pseudo-Label-Keras,代碼行數:19,代碼來源:mobilenet_transfer_pseudo_cifar.py

示例14: __init__

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import SGD [as 別名]
def __init__(self, X_train, X_val, y_train, y_val, model_module, optimizer, load_to_memory):
        self.model_module = model_module
        self.dataset_mean = np.load(os.path.join(MODEL_MEANS_BASEPATH, "{}_mean.npy".format(model_module.BASE_NAME)))
        self.optimizer = optimizer if optimizer != 'sgd' else SGD(lr=self.init_lr, momentum=0.9, nesterov=True)
        self.in_memory_data = load_to_memory
        extended_x_train, extended_y_train = self._get_extended_data(X_train, y_train)
        extended_x_val, extended_y_val = self._get_extended_data(X_val, y_val)
        self.y_train = extended_y_train
        self.y_val = extended_y_val
        if self.in_memory_data:
            self.X_train = self._load_features(extended_x_train)
            self.X_val = self._load_features(extended_x_val)
        else:
            self.X_train = extended_x_train
            self.X_val = extended_x_val 
開發者ID:Veleslavia,項目名稱:EUSIPCO2017,代碼行數:17,代碼來源:training.py

示例15: compile_model

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import SGD [as 別名]
def compile_model(model):
    lrate = 0.01
    sgd = SGD(lr=lrate, momentum=0.9, decay=1e-6, nesterov=True)
    model.compile(loss='sparse_categorical_crossentropy', optimizer=sgd)
    return model 
開發者ID:JasonDoingGreat,項目名稱:Convolutional-Networks-for-Stock-Predicting,代碼行數:7,代碼來源:cnn_main.py


注:本文中的keras.optimizers.SGD屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。