當前位置: 首頁>>代碼示例>>Python>>正文


Python recurrent.LSTM屬性代碼示例

本文整理匯總了Python中keras.layers.recurrent.LSTM屬性的典型用法代碼示例。如果您正苦於以下問題:Python recurrent.LSTM屬性的具體用法?Python recurrent.LSTM怎麽用?Python recurrent.LSTM使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在keras.layers.recurrent的用法示例。


在下文中一共展示了recurrent.LSTM屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_model

# 需要導入模塊: from keras.layers import recurrent [as 別名]
# 或者: from keras.layers.recurrent import LSTM [as 別名]
def build_model():
    """
    定義模型
    """
    model = Sequential()

    model.add(LSTM(units=Conf.LAYERS[1], input_shape=(Conf.LAYERS[1], Conf.LAYERS[0]), return_sequences=True))
    model.add(Dropout(0.2))

    model.add(LSTM(Conf.LAYERS[2], return_sequences=False))
    model.add(Dropout(0.2))

    model.add(Dense(units=Conf.LAYERS[3]))
    # model.add(BatchNormalization(weights=None, epsilon=1e-06, momentum=0.9))
    model.add(Activation("tanh"))
    # act = PReLU(alpha_initializer='zeros', weights=None)
    # act = LeakyReLU(alpha=0.3)
    # model.add(act)

    start = time.time()
    model.compile(loss="mse", optimizer="rmsprop")
    print("> Compilation Time : ", time.time() - start)
    return model 
開發者ID:liyinwei,項目名稱:copper_price_forecast,代碼行數:25,代碼來源:co_lstm_predict_day.py

示例2: __init__

# 需要導入模塊: from keras.layers import recurrent [as 別名]
# 或者: from keras.layers.recurrent import LSTM [as 別名]
def __init__(self, embed_size, hidden_size, vocab_size, dropin, optimiser,
                 l2reg, hsn_size=512, weights=None, gru=False,
                 clipnorm=-1, batch_size=None, t=None, lr=0.001):

        self.max_t = t  # Expected timesteps. Needed to build the Theano graph

        # Model hyperparameters
        self.vocab_size = vocab_size  # size of word vocabulary
        self.embed_size = embed_size  # number of units in a word embedding
        self.hsn_size = hsn_size  # size of the source hidden vector
        self.hidden_size = hidden_size  # number of units in first LSTM
        self.gru = gru  # gru recurrent layer? (false = lstm)
        self.dropin = dropin  # prob. of dropping input units
        self.l2reg = l2reg  # weight regularisation penalty

        # Optimiser hyperparameters
        self.optimiser = optimiser  # optimisation method
        self.lr = lr
        self.beta1 = 0.9
        self.beta2 = 0.999
        self.epsilon = 1e-8
        self.clipnorm = clipnorm

        self.weights = weights  # initialise with checkpointed weights? 
開發者ID:elliottd,項目名稱:GroundedTranslation,代碼行數:26,代碼來源:models.py

示例3: create_lstm_model

# 需要導入模塊: from keras.layers import recurrent [as 別名]
# 或者: from keras.layers.recurrent import LSTM [as 別名]
def create_lstm_model(self,
                          name='convlstm_encdec',
                          r_state=True,
                          r_sequence=False):
        return LSTM(units=self._num_hidden_units,
                    dropout=self._lstm_dropout,
                    recurrent_dropout=self._lstm_recurrent_dropout,
                    return_state=r_state,
                    return_sequences=r_sequence,
                    stateful=False,
                    bias_initializer='zeros',
                    kernel_regularizer=self._kernel_regularizer,
                    recurrent_regularizer=self._recurrent_regularizer,
                    bias_regularizer=self._bias_regularizer,
                    activation=self._activation,
                    name=name) 
開發者ID:aras62,項目名稱:PIEPredict,代碼行數:18,代碼來源:pie_intent.py

示例4: create_lstm_model

# 需要導入模塊: from keras.layers import recurrent [as 別名]
# 或者: from keras.layers.recurrent import LSTM [as 別名]
def create_lstm_model(self, name='lstm', r_state=True, r_sequence=True):
        """
        A Helper function that generates an instance of LSTM
        :param name: Name of the layer
        :param r_state: Whether to return states
        :param r_sequence: Whether to return sequences
        :return: An LSTM instance
        """

        return LSTM(units=self._num_hidden_units,
                    return_state=r_state,
                    return_sequences=r_sequence,
                    stateful=False,
                    kernel_regularizer=self._regularizer,
                    recurrent_regularizer=self._regularizer,
                    bias_regularizer=self._regularizer,
                    activity_regularizer=None,
                    activation=self._activation,
                    name=name)

    # Custom layers 
開發者ID:aras62,項目名稱:PIEPredict,代碼行數:23,代碼來源:pie_predict.py

示例5: LSTM

# 需要導入模塊: from keras.layers import recurrent [as 別名]
# 或者: from keras.layers.recurrent import LSTM [as 別名]
def LSTM(self, argsDict):
        self.paras.batch_size             = argsDict["batch_size"]
        self.paras.model['dropout']       = argsDict['dropout']
        self.paras.model['activation']    = argsDict["activation"]
        self.paras.model['optimizer']     = argsDict["optimizer"]
        self.paras.model['learning_rate'] = argsDict["learning_rate"]

        print(self.paras.batch_size, self.paras.model['dropout'], self.paras.model['activation'], self.paras.model['optimizer'], self.paras.model['learning_rate'])

        model = self.lstm_model()
        model.fit(self.train_x, self.train_y,
              batch_size=self.paras.batch_size,
              epochs=self.paras.epoch,
              verbose=0,
              callbacks=[EarlyStopping(monitor='loss', patience=5)]
              )

        score, mse = model.evaluate(self.test_x, self.test_y, verbose=0)
        y_pred=model.predict(self.test_x)
        reca=Recall_s(self.test_y,y_pred)
        return -reca 
開發者ID:doncat99,項目名稱:StockRecommendSystem,代碼行數:23,代碼來源:Stock_Prediction_Model_Stateless_LSTM.py

示例6: plot_training_curve

# 需要導入模塊: from keras.layers import recurrent [as 別名]
# 或者: from keras.layers.recurrent import LSTM [as 別名]
def plot_training_curve(self, history):
        #         %matplotlib inline
        #         %pylab inline
        #         pylab.rcParams['figure.figsize'] = (15, 9)   # Change the size of plots

        # LSTM training
        f, ax = plt.subplots()
        ax.plot(history.history['loss'])
        #ax.plot(history.history['val_loss'])
        ax.set_title('loss function')
        ax.set_ylabel('mse')
        ax.set_xlabel('epoch')
        #ax.legend(['loss', 'val_loss'], loc='upper right')
        ax.legend(['loss'], loc='upper right')
        plt.show()
        if self.paras.save == True:
            w = csv.writer(open(self.paras.save_folder + 'training_curve_model.txt', 'w'))
            for key, val in history.history.items():
                w.writerow([key, val])
            for key, val in history.params.items():
                w.writerow([key, val])

# Classification 
開發者ID:doncat99,項目名稱:StockRecommendSystem,代碼行數:25,代碼來源:Stock_Prediction_Model_Stateless_LSTM.py

示例7: build_model

# 需要導入模塊: from keras.layers import recurrent [as 別名]
# 或者: from keras.layers.recurrent import LSTM [as 別名]
def build_model(layers):
    """
    模型定義
    """
    model = Sequential()

    model.add(LSTM(units=layers[1], input_shape=(layers[1], layers[0]), return_sequences=True))
    model.add(Dropout(0.2))

    model.add(LSTM(layers[2], return_sequences=False))
    model.add(Dropout(0.2))

    model.add(Dense(units=layers[3]))
    model.add(Activation("tanh"))

    start = time.time()
    model.compile(loss="mse", optimizer="rmsprop")
    print("> Compilation Time : ", time.time() - start)
    return model 
開發者ID:liyinwei,項目名稱:copper_price_forecast,代碼行數:21,代碼來源:lstm.py

示例8: build_model

# 需要導入模塊: from keras.layers import recurrent [as 別名]
# 或者: from keras.layers.recurrent import LSTM [as 別名]
def build_model(layers):
    model = Sequential()

    model.add(LSTM(
        input_dim=layers[0],
        output_dim=layers[1],
        return_sequences=True))
    model.add(Dropout(0.2))

    model.add(LSTM(
        layers[2],
        return_sequences=False))
    model.add(Dropout(0.2))

    model.add(Dense(
        output_dim=layers[2]))
    model.add(Activation("linear"))

    start = time.time()
    model.compile(loss="mse", optimizer="rmsprop", metrics=['accuracy'])
    print("Compilation Time : ", time.time() - start)
    return model 
開發者ID:QUANTAXIS,項目名稱:QUANTAXIS,代碼行數:24,代碼來源:RNN-example_using_keras.py

示例9: build_model2

# 需要導入模塊: from keras.layers import recurrent [as 別名]
# 或者: from keras.layers.recurrent import LSTM [as 別名]
def build_model2(layers):
    d = 0.2
    model = Sequential()
    model.add(LSTM(128, input_shape=(
        layers[1], layers[0]), return_sequences=True))
    model.add(Dropout(d))
    model.add(LSTM(64, input_shape=(
        layers[1], layers[0]), return_sequences=False))
    model.add(Dropout(d))
    model.add(Dense(16, init='uniform', activation='relu'))
    model.add(Dense(1, init='uniform', activation='relu'))
    model.compile(loss='mse', optimizer='adam', metrics=['accuracy'])
    return model


# In[10]: 
開發者ID:QUANTAXIS,項目名稱:QUANTAXIS,代碼行數:18,代碼來源:RNN-example_using_keras.py

示例10: fit_model_new

# 需要導入模塊: from keras.layers import recurrent [as 別名]
# 或者: from keras.layers.recurrent import LSTM [as 別名]
def fit_model_new(train_X, train_Y, window_size = 1):
    model2 = Sequential()
    model2.add(LSTM(input_shape = (window_size, 1),
               units = window_size,
               return_sequences = True))
    model2.add(Dropout(0.5))
    model2.add(LSTM(256))
    model2.add(Dropout(0.5))
    model2.add(Dense(1))
    model2.add(Activation("linear"))
    model2.compile(loss = "mse",
              optimizer = "adam")
    model2.summary()

    # Fit the first model.
    model2.fit(train_X, train_Y, epochs = 80,
              batch_size = 1,
              verbose = 2)
    return(model2) 
開發者ID:BBVA,項目名稱:timecop,代碼行數:21,代碼來源:helpers.py

示例11: drqn

# 需要導入模塊: from keras.layers import recurrent [as 別名]
# 或者: from keras.layers.recurrent import LSTM [as 別名]
def drqn(input_shape, action_size, learning_rate):

        model = Sequential()
        model.add(TimeDistributed(Convolution2D(32, 8, 8, subsample=(4,4), activation='relu'), input_shape=(input_shape)))
        model.add(TimeDistributed(Convolution2D(64, 4, 4, subsample=(2,2), activation='relu')))
        model.add(TimeDistributed(Convolution2D(64, 3, 3, activation='relu')))
        model.add(TimeDistributed(Flatten()))

        # Use all traces for training
        #model.add(LSTM(512, return_sequences=True,  activation='tanh'))
        #model.add(TimeDistributed(Dense(output_dim=action_size, activation='linear')))

        # Use last trace for training
        model.add(LSTM(512,  activation='tanh'))
        model.add(Dense(output_dim=action_size, activation='linear'))

        adam = Adam(lr=learning_rate)
        model.compile(loss='mse',optimizer=adam)

        return model 
開發者ID:flyyufelix,項目名稱:VizDoom-Keras-RL,代碼行數:22,代碼來源:networks.py

示例12: a2c_lstm

# 需要導入模塊: from keras.layers import recurrent [as 別名]
# 或者: from keras.layers.recurrent import LSTM [as 別名]
def a2c_lstm(input_shape, action_size, value_size, learning_rate):
        """Actor and Critic Network share convolution layers with LSTM
        """

        state_input = Input(shape=(input_shape)) # 4x64x64x3
        x = TimeDistributed(Convolution2D(32, 8, 8, subsample=(4,4), activation='relu'))(state_input)
        x = TimeDistributed(Convolution2D(64, 4, 4, subsample=(2,2), activation='relu'))(x)
        x = TimeDistributed(Convolution2D(64, 3, 3, activation='relu'))(x)
        x = TimeDistributed(Flatten())(x)

        x = LSTM(512, activation='tanh')(x)

        # Actor Stream
        actor = Dense(action_size, activation='softmax')(x)

        # Critic Stream
        critic = Dense(value_size, activation='linear')(x)

        model = Model(input=state_input, output=[actor, critic])

        adam = Adam(lr=learning_rate, clipnorm=1.0)
        model.compile(loss=['categorical_crossentropy', 'mse'], optimizer=adam, loss_weights=[1., 1.])

        return model 
開發者ID:flyyufelix,項目名稱:VizDoom-Keras-RL,代碼行數:26,代碼來源:networks.py

示例13: gen_model

# 需要導入模塊: from keras.layers import recurrent [as 別名]
# 或者: from keras.layers.recurrent import LSTM [as 別名]
def gen_model(vocab_size=100, embedding_size=128, maxlen=100, output_size=6, hidden_layer_size=100, num_hidden_layers = 1, RNN_LAYER_TYPE="LSTM"):
    RNN_CLASS = LSTM
    if RNN_LAYER_TYPE == "GRU":
        RNN_CLASS = GRU
    logger.info("Parameters: vocab_size = %s, embedding_size = %s, maxlen = %s, output_size = %s, hidden_layer_size = %s, " %\
            (vocab_size, embedding_size, maxlen, output_size, hidden_layer_size))
    logger.info("Building Model")
    model = Sequential()
    logger.info("Init Model with vocab_size = %s, embedding_size = %s, maxlen = %s" % (vocab_size, embedding_size, maxlen))
    model.add(Embedding(vocab_size, embedding_size, input_length=maxlen))
    logger.info("Added Embedding Layer")
    model.add(Dropout(0.5))
    logger.info("Added Dropout Layer")
    for i in xrange(num_hidden_layers):
        model.add(RNN_CLASS(output_dim=hidden_layer_size, activation='sigmoid', inner_activation='hard_sigmoid', return_sequences=True))
        logger.info("Added %s Layer" % RNN_LAYER_TYPE)
        model.add(Dropout(0.5))
        logger.info("Added Dropout Layer")
    model.add(RNN_CLASS(output_dim=output_size, activation='sigmoid', inner_activation='hard_sigmoid', return_sequences=True))
    logger.info("Added %s Layer" % RNN_LAYER_TYPE)
    model.add(Dropout(0.5))
    logger.info("Added Dropout Layer")
    model.add(TimeDistributedDense(output_size, activation="softmax"))
    logger.info("Added Dropout Layer")
    logger.info("Created model with following config:\n%s" % json.dumps(model.get_config(), indent=4))
    logger.info("Compiling model with optimizer %s" % optimizer)
    start_time = time.time()
    model.compile(loss='categorical_crossentropy', optimizer=optimizer)
    total_time = time.time() - start_time
    logger.info("Model compiled in %.4f seconds." % total_time)
    return model 
開發者ID:napsternxg,項目名稱:DeepSequenceClassification,代碼行數:33,代碼來源:model.py

示例14: test_specify_initial_state_keras_tensor

# 需要導入模塊: from keras.layers import recurrent [as 別名]
# 或者: from keras.layers.recurrent import LSTM [as 別名]
def test_specify_initial_state_keras_tensor(layer_class):
    num_states = 2 if layer_class is recurrent.LSTM else 1

    # Test with Keras tensor
    inputs = Input((timesteps, embedding_dim))
    initial_state = [Input((units,)) for _ in range(num_states)]
    layer = layer_class(units)
    if len(initial_state) == 1:
        output = layer(inputs, initial_state=initial_state[0])
    else:
        output = layer(inputs, initial_state=initial_state)
    assert initial_state[0] in layer._inbound_nodes[0].input_tensors

    model = Model([inputs] + initial_state, output)
    model.compile(loss='categorical_crossentropy', optimizer='adam')

    inputs = np.random.random((num_samples, timesteps, embedding_dim))
    initial_state = [np.random.random((num_samples, units))
                     for _ in range(num_states)]
    targets = np.random.random((num_samples, units))
    model.fit([inputs] + initial_state, targets) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:23,代碼來源:recurrent_test.py

示例15: test_specify_initial_state_non_keras_tensor

# 需要導入模塊: from keras.layers import recurrent [as 別名]
# 或者: from keras.layers.recurrent import LSTM [as 別名]
def test_specify_initial_state_non_keras_tensor(layer_class):
    num_states = 2 if layer_class is recurrent.LSTM else 1

    # Test with non-Keras tensor
    inputs = Input((timesteps, embedding_dim))
    initial_state = [K.random_normal_variable((num_samples, units), 0, 1)
                     for _ in range(num_states)]
    layer = layer_class(units)
    output = layer(inputs, initial_state=initial_state)

    model = Model(inputs, output)
    model.compile(loss='categorical_crossentropy', optimizer='adam')

    inputs = np.random.random((num_samples, timesteps, embedding_dim))
    targets = np.random.random((num_samples, units))
    model.fit(inputs, targets) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:18,代碼來源:recurrent_test.py


注:本文中的keras.layers.recurrent.LSTM屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。