本文整理匯總了Python中keras.layers.ELU屬性的典型用法代碼示例。如果您正苦於以下問題:Python layers.ELU屬性的具體用法?Python layers.ELU怎麽用?Python layers.ELU使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類keras.layers
的用法示例。
在下文中一共展示了layers.ELU屬性的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ELU [as 別名]
def get_model(time_len=1):
ch, row, col = 3, 160, 320 # camera format
model = Sequential()
model.add(Lambda(lambda x: x/127.5 - 1.,
input_shape=(ch, row, col),
output_shape=(ch, row, col)))
model.add(Convolution2D(16, 8, 8, subsample=(4, 4), border_mode="same"))
model.add(ELU())
model.add(Convolution2D(32, 5, 5, subsample=(2, 2), border_mode="same"))
model.add(ELU())
model.add(Convolution2D(64, 5, 5, subsample=(2, 2), border_mode="same"))
model.add(Flatten())
model.add(Dropout(.2))
model.add(ELU())
model.add(Dense(512))
model.add(Dropout(.5))
model.add(ELU())
model.add(Dense(1))
model.compile(optimizer="adam", loss="mse")
return model
示例2: generate_dense_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ELU [as 別名]
def generate_dense_model(input_shape, layers, nb_actions):
model = Sequential()
model.add(Flatten(input_shape=input_shape))
model.add(Dropout(0.1)) # drop out the input to make model less sensitive to any 1 feature
for layer in layers:
model.add(Dense(layer))
model.add(BatchNormalization())
model.add(ELU(alpha=1.0))
model.add(Dense(nb_actions))
model.add(Activation('linear'))
print(model.summary())
return model
示例3: Encoder
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ELU [as 別名]
def Encoder(hidden_size, activation=None, return_sequences=True, bidirectional=False, use_gru=True):
if activation is None:
activation = ELU()
if use_gru:
def _encoder(x):
if bidirectional:
branch_1 = GRU(int(hidden_size/2), activation='linear',
return_sequences=return_sequences, go_backwards=False)(x)
branch_2 = GRU(int(hidden_size/2), activation='linear',
return_sequences=return_sequences, go_backwards=True)(x)
x = concatenate([branch_1, branch_2])
x = activation(x)
return x
else:
x = GRU(hidden_size, activation='linear',
return_sequences=return_sequences)(x)
x = activation(x)
return x
else:
def _encoder(x):
if bidirectional:
branch_1 = LSTM(int(hidden_size/2), activation='linear',
return_sequences=return_sequences, go_backwards=False)(x)
branch_2 = LSTM(int(hidden_size/2), activation='linear',
return_sequences=return_sequences, go_backwards=True)(x)
x = concatenate([branch_1, branch_2])
x = activation(x)
return x
else:
x = LSTM(hidden_size, activation='linear',
return_sequences=return_sequences)(x)
x = activation(x)
return x
return _encoder
示例4: AttentionDecoder
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ELU [as 別名]
def AttentionDecoder(hidden_size, activation=None, return_sequences=True, bidirectional=False, use_gru=True):
if activation is None:
activation = ELU()
if use_gru:
def _decoder(x, attention):
if bidirectional:
branch_1 = AttentionWrapper(GRU(int(hidden_size/2), activation='linear', return_sequences=return_sequences,
go_backwards=False), attention, single_attention_param=True)(x)
branch_2 = AttentionWrapper(GRU(int(hidden_size/2), activation='linear', return_sequences=return_sequences,
go_backwards=True), attention, single_attention_param=True)(x)
x = concatenate([branch_1, branch_2])
return activation(x)
else:
x = AttentionWrapper(GRU(hidden_size, activation='linear',
return_sequences=return_sequences), attention, single_attention_param=True)(x)
x = activation(x)
return x
else:
def _decoder(x, attention):
if bidirectional:
branch_1 = AttentionWrapper(LSTM(int(hidden_size/2), activation='linear', return_sequences=return_sequences,
go_backwards=False), attention, single_attention_param=True)(x)
branch_2 = AttentionWrapper(LSTM(hidden_size, activation='linear', return_sequences=return_sequences,
go_backwards=True), attention, single_attention_param=True)(x)
x = concatenate([branch_1, branch_2])
x = activation(x)
return x
else:
x = AttentionWrapper(LSTM(hidden_size, activation='linear', return_sequences=return_sequences),
attention, single_attention_param=True)(x)
x = activation(x)
return x
return _decoder
示例5: Decoder
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ELU [as 別名]
def Decoder(hidden_size, activation=None, return_sequences=True, bidirectional=False, use_gru=True):
if activation is None:
activation = ELU()
if use_gru:
def _decoder(x):
if bidirectional:
x = Bidirectional(
GRU(int(hidden_size/2), activation='linear', return_sequences=return_sequences))(x)
x = activation(x)
return x
else:
x = GRU(hidden_size, activation='linear',
return_sequences=return_sequences)(x)
x = activation(x)
return x
else:
def _decoder(x):
if bidirectional:
x = Bidirectional(
LSTM(int(hidden_size/2), activation='linear', return_sequences=return_sequences))(x)
x = activation(x)
return x
else:
x = LSTM(hidden_size, activation='linear',
return_sequences=return_sequences)(x)
x = activation(x)
return x
return _decoder
示例6: __init__
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ELU [as 別名]
def __init__(self):
super(ELUNet, self).__init__()
self.elu = nn.ELU()
示例7: test_elu
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ELU [as 別名]
def test_elu(self):
keras_model = Sequential()
keras_model.add(ELU(input_shape=(3, 32, 32), name='elu'))
keras_model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.SGD())
pytorch_model = ELUNet()
self.transfer(keras_model, pytorch_model)
self.assertEqualPrediction(keras_model, pytorch_model, self.test_data)
# Tests activation function with learned parameters
示例8: convresblock
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ELU [as 別名]
def convresblock(x, nfeats=8, ksize=3, nskipped=2, elu=True):
"""The proposed residual block from [4].
Running with elu=True will use ELU nonlinearity and running with
elu=False will use BatchNorm + RELU nonlinearity. While ELU's are fast
due to the fact they do not suffer from BatchNorm overhead, they may
overfit because they do not offer the stochastic element of the batch
formation process of BatchNorm, which acts as a good regularizer.
# Arguments
x: 4D tensor, the tensor to feed through the block
nfeats: Integer, number of feature maps for conv layers.
ksize: Integer, width and height of conv kernels in first convolution.
nskipped: Integer, number of conv layers for the residual function.
elu: Boolean, whether to use ELU or BN+RELU.
# Input shape
4D tensor with shape:
`(batch, channels, rows, cols)`
# Output shape
4D tensor with shape:
`(batch, filters, rows, cols)`
"""
y0 = Conv2D(nfeats, ksize, padding='same')(x)
y = y0
for i in range(nskipped):
if elu:
y = ELU()(y)
else:
y = BatchNormalization(axis=1)(y)
y = Activation('relu')(y)
y = Conv2D(nfeats, 1, padding='same')(y)
return layers.add([y0, y])
示例9: test_elu
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ELU [as 別名]
def test_elu():
for alpha in [0., .5, -1.]:
layer_test(layers.ELU, kwargs={'alpha': alpha},
input_shape=(2, 3, 4))
示例10: create_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ELU [as 別名]
def create_model(input_shape, hidden_layers=[1024, 512, 256], input_dropout=0.1, hidden_dropout=0.5):
'''Define a simple multilayer perceptron.
Args:
input_shape (tuple): input shape to the model. For this model, should be of shape (dim,)
input_dropout (float): fraction of input features to drop out during training
hidden_layers (tuple): a tuple/list with number of hidden units in each hidden layer
Returns:
keras.models.Sequential : a model to train
'''
model = Sequential()
# dropout the input to prevent overfitting to any one feature
# (a similar concept to randomization in random forests,
# but we choose less severe feature sampling )
model.add(Dropout(input_dropout, input_shape=input_shape))
# set up hidden layers
for n_hidden_units in hidden_layers:
# the layer...activation will come later
model.add(Dense(n_hidden_units))
# dropout to prevent overfitting
model.add(Dropout(hidden_dropout))
# batchnormalization helps training
model.add(BatchNormalization())
# ...the activation!
model.add(ELU())
# the output layer
model.add(Dense(1, activation='sigmoid'))
# we'll optimize with plain old sgd
model.compile(loss='binary_crossentropy',
optimizer='sgd', metrics=['accuracy'])
return model
示例11: ResidualBlock1D_helper
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ELU [as 別名]
def ResidualBlock1D_helper(layers, kernel_size, filters, final_stride=1):
def f(_input):
basic = _input
for ln in range(layers):
#basic = BatchNormalization()( basic ) # triggers known keras bug w/ TimeDistributed: https://github.com/fchollet/keras/issues/5221
basic = ELU()(basic)
basic = Conv1D(filters, kernel_size, kernel_initializer='he_normal',
kernel_regularizer=l2(1.e-4), padding='same')(basic)
# note that this strides without averaging
return AveragePooling1D(pool_size=1, strides=final_stride)(Add()([_input, basic]))
return f
示例12: build_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ELU [as 別名]
def build_model(output_size):
channel_axis = 3
freq_axis = 1
padding = 37
input_shape = (img_height, img_width, channels)
print('Building model...')
model = Sequential()
#model.add(ZeroPadding2D(padding=(0, padding), data_format='channels_last', input_shape=input_shape))
#model.add(BatchNormalization(axis=freq_axis, name='bn_0_freq'))
#model.add(Conv2D(64, (3, 3), padding='same', name='conv1'))
#model.add(BatchNormalization(axis=channel_axis, name='bn1'))
#model.add(ELU())
#model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), name='pool1'))
#model.add(Dropout(0.1, name='dropout1'))
#model.add(Conv2D(128, (3, 3), padding='same', name='conv2'))
#model.add(BatchNormalization(axis=channel_axis, name='bn2'))
#model.add(ELU())
#model.add(MaxPooling2D(pool_size=(3, 3), strides=(3, 3), name='pool2'))
#model.add(Dropout(0.1, name='dropout2'))
#model.add(Conv2D(128, (3, 3), padding='same', name='conv3'))
#model.add(BatchNormalization(axis=channel_axis, name='bn3'))
#model.add(ELU())
#model.add(MaxPooling2D(pool_size=(4, 4), strides=(4, 4), name='pool3'))
#model.add(Dropout(0.1, name='dropout3'))
#model.add(Conv2D(128, (3, 3), padding='same', name='conv4'))
#model.add(BatchNormalization(axis=channel_axis, name='bn4'))
#model.add(ELU())
#model.add(MaxPooling2D(pool_size=(4, 4), strides=(4, 4), name='pool4'))
#model.add(Dropout(0.1, name='dropout4'))
#model.add(Reshape(target_shape=(15, 128)))
#model.add(GRU(32, return_sequences=True, name='gru1'))
#model.add(GRU(32, return_sequences=False, name='gru2'))
#model.add(Dropout(0.3, name='dropout_final'))
model.add(Reshape(target_shape=(img_height * img_width,), input_shape=input_shape))
model.add(Dense(output_size, activation='softmax', name='output', input_shape=input_shape))
return model
示例13: build_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ELU [as 別名]
def build_model(output_size):
channel_axis = 3
freq_axis = 1
padding = 37
input_shape = (img_height, img_width, channels)
print('Building model...')
model = Sequential()
model.add(ZeroPadding2D(padding=(0, padding), data_format='channels_last', input_shape=input_shape))
model.add(BatchNormalization(axis=freq_axis, name='bn_0_freq'))
model.add(Conv2D(64, (3, 3), padding='same', name='conv1'))
model.add(BatchNormalization(axis=channel_axis, name='bn1'))
model.add(ELU())
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), name='pool1'))
model.add(Dropout(0.1, name='dropout1'))
model.add(Conv2D(128, (3, 3), padding='same', name='conv2'))
model.add(BatchNormalization(axis=channel_axis, name='bn2'))
model.add(ELU())
model.add(MaxPooling2D(pool_size=(3, 3), strides=(3, 3), name='pool2'))
model.add(Dropout(0.1, name='dropout2'))
model.add(Conv2D(128, (3, 3), padding='same', name='conv3'))
model.add(BatchNormalization(axis=channel_axis, name='bn3'))
model.add(ELU())
model.add(MaxPooling2D(pool_size=(4, 4), strides=(4, 4), name='pool3'))
model.add(Dropout(0.1, name='dropout3'))
model.add(Conv2D(128, (3, 3), padding='same', name='conv4'))
model.add(BatchNormalization(axis=channel_axis, name='bn4'))
model.add(ELU())
model.add(MaxPooling2D(pool_size=(4, 4), strides=(4, 4), name='pool4'))
model.add(Dropout(0.1, name='dropout4'))
model.add(Reshape(target_shape=(15, 128)))
model.add(GRU(32, return_sequences=True, name='gru1'))
model.add(GRU(32, return_sequences=False, name='gru2'))
model.add(Dropout(0.3, name='dropout_final'))
model.add(Dense(output_size, activation='softmax', name='output'))
return model
示例14: buildModel
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import ELU [as 別名]
def buildModel(cameraFormat=(3, 480, 640)):
"""
Build and return a CNN; details in the comments.
The intent is a scaled down version of the model from "End to End Learning
for Self-Driving Cars": https://arxiv.org/abs/1604.07316.
Args:
cameraFormat: (3-tuple) Ints to specify the input dimensions (color
channels, rows, columns).
Returns:
A compiled Keras model.
"""
print "Building model..."
ch, row, col = cameraFormat
model = Sequential()
# Use a lambda layer to normalize the input data
model.add(Lambda(
lambda x: x/127.5 - 1.,
input_shape=(ch, row, col),
output_shape=(ch, row, col))
)
# Several convolutional layers, each followed by ELU activation
# 8x8 convolution (kernel) with 4x4 stride over 16 output filters
model.add(Convolution2D(16, 8, 8, subsample=(4, 4), border_mode="same"))
model.add(ELU())
# 5x5 convolution (kernel) with 2x2 stride over 32 output filters
model.add(Convolution2D(32, 5, 5, subsample=(2, 2), border_mode="same"))
model.add(ELU())
# 5x5 convolution (kernel) with 2x2 stride over 64 output filters
model.add(Convolution2D(64, 5, 5, subsample=(2, 2), border_mode="same"))
# Flatten the input to the next layer
model.add(Flatten())
# Apply dropout to reduce overfitting
model.add(Dropout(.2))
model.add(ELU())
# Fully connected layer
model.add(Dense(512))
# More dropout
model.add(Dropout(.5))
model.add(ELU())
# Fully connected layer with one output dimension (representing the speed).
model.add(Dense(1))
# Adam optimizer is a standard, efficient SGD optimization method
# Loss function is mean squared error, standard for regression problems
model.compile(optimizer="adam", loss="mse")
return model