當前位置: 首頁>>代碼示例>>Python>>正文


Python backend._BACKEND屬性代碼示例

本文整理匯總了Python中keras.backend._BACKEND屬性的典型用法代碼示例。如果您正苦於以下問題:Python backend._BACKEND屬性的具體用法?Python backend._BACKEND怎麽用?Python backend._BACKEND使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在keras.backend的用法示例。


在下文中一共展示了backend._BACKEND屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import _BACKEND [as 別名]
def __init__(self, layer, input_shape=None, input_dim=None, input_length=None, weights=None, **kwargs):
        if K._BACKEND == 'tensorflow':
            import warnings
            warnings.warn('TimeDistributed() wrapper untested with tensorflow! Use at your own risk.')

        self.layer = layer

        self.initial_weights = weights

        self.input_dim = input_dim
        self.input_length = input_length

        if hasattr(self.layer, 'input_ndim'):
            self.input_ndim = self.layer.input_ndim + 1

        if input_shape:
            self.set_input_shape((None, ) + input_shape)

        if self.input_dim:
            kwargs['input_shape'] = (self.input_length, self.input_dim)

        super(TimeDistributed, self).__init__(**kwargs) 
開發者ID:textclf,項目名稱:fancy-cnn,代碼行數:24,代碼來源:timedistributed.py

示例2: get_output

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import _BACKEND [as 別名]
def get_output(self, train=False):
        def format_shape(shape):
            if K._BACKEND == 'tensorflow':
                def trf(x):
                    try:
                        return int(x)
                    except TypeError:
                        return x

                return map(trf, shape)
            return shape

        X = self.get_input(train)

        in_shape = format_shape(K.shape(X))
        batch_flatten_len = K.prod(in_shape[:2])
        cast_in_shape = (batch_flatten_len, ) + tuple(in_shape[i] for i in range(2, K.ndim(X)))
        
        pre_outs = self.layer(K.reshape(X, cast_in_shape))
        
        out_shape = format_shape(K.shape(pre_outs))
        cast_out_shape = (in_shape[0], in_shape[1]) + tuple(out_shape[i] for i in range(1, K.ndim(pre_outs)))
        
        outputs = K.reshape(pre_outs, cast_out_shape)
        return outputs 
開發者ID:textclf,項目名稱:fancy-cnn,代碼行數:27,代碼來源:timedistributed.py

示例3: add_vgg_to_layer

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import _BACKEND [as 別名]
def add_vgg_to_layer(input_layer, trainable=False, pool_mode='max',
        weights_path='vgg16_weights.h5', last_layer=None):
    layers = get_layers(pool_mode=pool_mode, last_layer=last_layer,
        trainable=trainable, weights_path=weights_path)
    # load the weights of the VGG16 networks
    assert os.path.exists(weights_path), 'Model weights not found (see "--vgg-weights" parameter).'
    f = h5py.File(weights_path)
    last_layer = input_layer
    for k, layer in zip(range(f.attrs['nb_layers']), layers):
        g = f['layer_{}'.format(k)]
        weights = [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])]
        if isinstance(layer, Convolution2D) and K._BACKEND == 'theano':
            weights[0] = np.array(weights[0])[:, :, ::-1, ::-1]
        last_layer = layer(last_layer)
        layer.trainable = trainable
        layer.set_weights(weights)
    f.close()
    return last_layer 
開發者ID:awentzonline,項目名稱:keras-vgg-buddy,代碼行數:20,代碼來源:models.py

示例4: get_callbacks

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import _BACKEND [as 別名]
def get_callbacks(config_data, appendix=''):
    ret_callbacks = []
    model_stored = False
    callbacks = config_data['callbacks']
    if K._BACKEND == 'tensorflow':
        tensor_board = TensorBoard(log_dir=os.path.join('logging', config_data['tb_log_dir']), histogram_freq=10)
        ret_callbacks.append(tensor_board)
    for callback in callbacks:
        if callback['name'] == 'early_stopping':
            ret_callbacks.append(EarlyStopping(monitor=callback['monitor'], patience=callback['patience'], verbose=callback['verbose'], mode=callback['mode']))
        elif callback['name'] == 'model_checkpoit':
            model_stored = True
            path = config_data['output_path']
            basename = config_data['output_basename']
            base_path = os.path.join(path, basename)
            opath = os.path.join(base_path, 'best_model{}.h5'.format(appendix))
            save_best = bool(callback['save_best_only'])
            ret_callbacks.append(ModelCheckpoint(filepath=opath, verbose=callback['verbose'], save_best_only=save_best, monitor=callback['monitor'], mode=callback['mode']))
    return ret_callbacks, model_stored 
開發者ID:spinningbytes,項目名稱:deep-mlsa,代碼行數:21,代碼來源:run_utils.py

示例5: build

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import _BACKEND [as 別名]
def build(self, input_shape):
        self.input_spec = [InputSpec(ndim=3)]
        if K._BACKEND == 'tensorflow':
            if not input_shape[1]:
                raise Exception('When using TensorFlow, you should define '
                                'explicitly the number of timesteps of '
                                'your sequences.\n'
                                'If your first layer is an Embedding, '
                                'make sure to pass it an "input_length" '
                                'argument. Otherwise, make sure '
                                'the first layer has '
                                'an "input_shape" or "batch_input_shape" '
                                'argument, including the time axis.')

        if not self.layer.built:
            self.layer.build(input_shape)
            self.layer.built = True

        super(ProbabilityTensor, self).build() 
開發者ID:braingineer,項目名稱:ikelos,代碼行數:21,代碼來源:attention.py

示例6: build_network

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import _BACKEND [as 別名]
def build_network(deepest=False):
    dropout = [0., 0.1, 0.2, 0.3, 0.4]
    conv = [(64, 3, 3), (128, 3, 3), (256, 3, 3), (512, 3, 3), (512, 2, 2)]
    input= Input(shape=(3, 32, 32) if K._BACKEND == 'theano' else (32, 32,3))
    output = fractal_net(
        c=3, b=5, conv=conv,
        drop_path=0.15, dropout=dropout,
        deepest=deepest)(input)
    output = Flatten()(output)
    output = Dense(NB_CLASSES, init='he_normal')(output)
    output = Activation('softmax')(output)
    model = Model(input=input, output=output)
    #optimizer = SGD(lr=LEARN_START, momentum=MOMENTUM)
    #optimizer = SGD(lr=LEARN_START, momentum=MOMENTUM, nesterov=True)
    optimizer = Adam()
    #optimizer = Nadam()
    model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
    plot(model, to_file='model.png', show_shapes=True)
    return model 
開發者ID:snf,項目名稱:keras-fractalnet,代碼行數:21,代碼來源:cifar10_fractal.py

示例7: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import _BACKEND [as 別名]
def call(self, x, mask=None):
        # input shape: (nb_samples, time (padded with zeros), input_dim)
        # note that the .build() method of subclasses MUST define
        # self.input_spec with a complete input shape.
        input_shape = self.input_spec[0].shape
        if K._BACKEND == 'tensorflow':
            if not input_shape[1]:
                raise Exception('When using TensorFlow, you should define '
                                'explicitly the number of timesteps of '
                                'your sequences.\n'
                                'If your first layer is an Embedding, '
                                'make sure to pass it an "input_length" '
                                'argument. Otherwise, make sure '
                                'the first layer has '
                                'an "input_shape" or "batch_input_shape" '
                                'argument, including the time axis. '
                                'Found input shape at layer ' + self.name +
                                ': ' + str(input_shape))
        if self.layer.stateful:
            initial_states = self.layer.states
        else:
            initial_states = self.layer.get_initial_states(x)
        constants = self.get_constants(x)
        preprocessed_input = self.layer.preprocess_input(x)

        last_output, outputs, states = K.rnn(self.step, preprocessed_input,
                                             initial_states,
                                             go_backwards=self.layer.go_backwards,
                                             mask=mask,
                                             constants=constants,
                                             unroll=self.layer.unroll,
                                             input_length=input_shape[1])
        if self.layer.stateful:
            self.updates = []
            for i in range(len(states)):
                self.updates.append((self.layer.states[i], states[i]))

        if self.layer.return_sequences:
            return outputs
        else:
            return last_output 
開發者ID:saurabhmathur96,項目名稱:Neural-Chatbot,代碼行數:43,代碼來源:sequence_blocks.py

示例8: set_img_format

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import _BACKEND [as 別名]
def set_img_format():
    try:
        if K.backend() == 'theano':
            K.set_image_data_format('channels_first')
        else:
            K.set_image_data_format('channels_last')
    except AttributeError:
        if K._BACKEND == 'theano':
            K.set_image_dim_ordering('th')
        else:
            K.set_image_dim_ordering('tf') 
開發者ID:Arsey,項目名稱:keras-transfer-learning-for-oxford102,代碼行數:13,代碼來源:util.py

示例9: check_dtype

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import _BACKEND [as 別名]
def check_dtype(var, dtype):
    if K._BACKEND == 'theano':
        assert var.dtype == dtype
    else:
        assert var.dtype.name == '%s_ref' % dtype 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:7,代碼來源:backend_test.py

示例10: main

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import _BACKEND [as 別名]
def main(net):
    ''' *WARNIING*
    This model use Batch Normalization, so the prediction
    is affected by batch. Use multiple, different data 
    samples together (at least 4) for reliable prediction.'''

    print('Running main() with network: %s and backend: %s' % (net, K._BACKEND))
    # setting
    audio_paths = ['data/bensound-cute.mp3',
                   'data/bensound-actionable.mp3',
                   'data/bensound-dubstep.mp3',
                   'data/bensound-thejazzpiano.mp3']
    melgram_paths = ['data/bensound-cute.npy',
                     'data/bensound-actionable.npy',
                     'data/bensound-dubstep.npy',
                     'data/bensound-thejazzpiano.npy']

    # prepare data like this
    melgrams = np.zeros((0, 1, 96, 1366))

    if librosa_exists:
        for audio_path in audio_paths:
            melgram = ap.compute_melgram(audio_path)
            melgrams = np.concatenate((melgrams, melgram), axis=0)
    else:
        for melgram_path in melgram_paths:
            melgram = np.load(melgram_path)
            melgrams = np.concatenate((melgrams, melgram), axis=0)

    # load model like this
    if net == 'cnn':
        model = MusicTaggerCNN(weights='msd', include_top=False)
    elif net == 'crnn':
        model = MusicTaggerCRNN(weights='msd', include_top=False)
    # predict the tags like this
    print('Predicting features...')
    start = time.time()
    features = model.predict(melgrams)
    print features[:, :10]
    return 
開發者ID:keunwoochoi,項目名稱:music-auto_tagging-keras,代碼行數:42,代碼來源:example_feat_extract.py

示例11: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import _BACKEND [as 別名]
def call(self, x, mask=None):
        # input shape: (nb_samples, time (padded with zeros), input_dim)
        # note that the .build() method of subclasses MUST define
        # self.input_spec with a complete input shape.
        input_shape = self.input_spec[0].shape
        if K._BACKEND == 'tensorflow':
            if not input_shape[1]:
                raise Exception('When using TensorFlow, you should define '
                                'explicitly the number of timesteps of '
                                'your sequences.\n'
                                'If your first layer is an Embedding, '
                                'make sure to pass it an "input_length" '
                                'argument. Otherwise, make sure '
                                'the first layer has '
                                'an "input_shape" or "batch_input_shape" '
                                'argument, including the time axis. '
                                'Found input shape at layer ' + self.name +
                                ': ' + str(input_shape))
        if self.layer.stateful:
            initial_states = self.layer.states
        else:
            initial_states = self.layer.get_initial_states(x)
        constants = self.get_constants(x)
        preprocessed_input = self.layer.preprocess_input(x)

        last_output, outputs, states = K.rnn(self.step, preprocessed_input,
                                             initial_states,
                                             go_backwards=self.layer.go_backwards,
                                             mask=mask,
                                             constants=constants,
                                             unroll=self.layer.unroll,
                                             input_length=input_shape[1])
        if self.layer.stateful:
            self.updates = []
            for i in range(len(states)):
                self.updates.append((self.layer.states[i], states[i]))

        if self.layer.return_sequences:
            return outputs
        else: 
開發者ID:wentaozhu,項目名稱:recurrent-attention-for-QA-SQUAD-based-on-keras,代碼行數:42,代碼來源:QnA.py

示例12: call

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import _BACKEND [as 別名]
def call(self, x, mask=None):
        # input shape: (nb_samples, time (padded with zeros), input_dim)
        # note that the .build() method of subclasses MUST define
        # self.input_spec with a complete input shape.
        input_shape = self.input_spec[0].shape
        if K._BACKEND == 'tensorflow':
            if not input_shape[1]:
                raise Exception('When using TensorFlow, you should define '
                                'explicitly the number of timesteps of '
                                'your sequences.\n'
                                'If your first layer is an Embedding, '
                                'make sure to pass it an "input_length" '
                                'argument. Otherwise, make sure '
                                'the first layer has '
                                'an "input_shape" or "batch_input_shape" '
                                'argument, including the time axis. '
                                'Found input shape at layer ' + self.name +
                                ': ' + str(input_shape))
        if self.layer.stateful:
            initial_states = self.layer.states
        else:
            initial_states = self.layer.get_initial_states(x)
        constants = self.get_constants(x)
        preprocessed_input = self.layer.preprocess_input(x)

        last_output, outputs, states = K.rnn(self.step, preprocessed_input,
                                             initial_states,
                                             go_backwards=self.layer.go_backwards,
                                             mask=mask,
                                             constants=constants,
                                             unroll=self.layer.unroll,
                                             input_length=input_shape[1])
        if self.layer.stateful:
            self.updates = []
            for i in range(len(states)):
                self.updates.append((self.layer.states[i], states[i]))

        if self.layer.return_sequences:
            return outputs
        else:
        	return last_output 
開發者ID:wentaozhu,項目名稱:recurrent-attention-for-QA-SQUAD-based-on-keras,代碼行數:43,代碼來源:layers.py

示例13: build

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import _BACKEND [as 別名]
def build(self, input_shape=None):
        '''Assumes that self.layer is already set.
        Should be called at the end of .build() in the
        children classes.
        '''        
        ndim = len(input_shape)
        assert ndim >= 3
        self.input_spec = [InputSpec(ndim=str(ndim)+'+')]
        #if input_shape is not None:
        #    self.last_two = input_shape[-2:]
        self._input_shape = input_shape
        #self.input_spec = [InputSpec(shape=input_shape)]
        if K._BACKEND == 'tensorflow':
            if not input_shape[1]:
                raise Exception('When using TensorFlow, you should define '
                                'explicitly the number of timesteps of '
                                'your sequences.\n'
                                'If your first layer is an Embedding, '
                                'make sure to pass it an "input_length" '
                                'argument. Otherwise, make sure '
                                'the first layer has '
                                'an "input_shape" or "batch_input_shape" '
                                'argument, including the time axis.')



        #child_input_shape = (np.prod(input_shape[:-2]),) + input_shape[-2:]
        child_input_shape = (None,)+input_shape[-2:]
        if not self.layer.built:
            self.layer.build(child_input_shape)
            self.layer.built = True

        self.trainable_weights = getattr(self.layer, 'trainable_weights', [])
        self.non_trainable_weights = getattr(self.layer, 'non_trainable_weights', [])
        self.updates = getattr(self.layer, 'updates', [])
        self.regularizers = getattr(self.layer, 'regularizers', [])
        self.constraints = getattr(self.layer, 'constraints', {}) 
開發者ID:braingineer,項目名稱:ikelos,代碼行數:39,代碼來源:distribute.py

示例14: log_keras_version_info

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import _BACKEND [as 別名]
def log_keras_version_info():
    import keras
    logger.info("Keras version: " + keras.__version__)
    from keras import backend as K
    try:
        backend = K.backend()
    except AttributeError:
        backend = K._BACKEND  # pylint: disable=protected-access
    if backend == 'theano':
        import theano
        logger.info("Theano version: " + theano.__version__)
        logger.warning("Using Keras' theano backend is not supported! Expect to crash...")
    elif backend == 'tensorflow':
        import tensorflow
        logger.info("Tensorflow version: " + tensorflow.__version__)  # pylint: disable=no-member 
開發者ID:allenai,項目名稱:deep_qa,代碼行數:17,代碼來源:checks.py

示例15: __init__

# 需要導入模塊: from keras import backend [as 別名]
# 或者: from keras.backend import _BACKEND [as 別名]
def __init__(self, log_dir='./logs', histogram_freq=0, write_graph=True):
        super(TensorBoard, self).__init__()
        if K._BACKEND != 'tensorflow':
            raise Exception('TensorBoard callback only works '
                            'with the TensorFlow backend.')
        self.log_dir = log_dir
        self.histogram_freq = histogram_freq
        self.merged = None
        self.write_graph = write_graph 
開發者ID:GUR9000,項目名稱:KerasNeuralFingerprint,代碼行數:11,代碼來源:callbacks.py


注:本文中的keras.backend._BACKEND屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。