本文整理匯總了Python中keras.applications.vgg19.VGG19屬性的典型用法代碼示例。如果您正苦於以下問題:Python vgg19.VGG19屬性的具體用法?Python vgg19.VGG19怎麽用?Python vgg19.VGG19使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類keras.applications.vgg19
的用法示例。
在下文中一共展示了vgg19.VGG19屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_img
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import VGG19 [as 別名]
def load_img(path_to_img):
max_dim = 512
img = Image.open(path_to_img)
img_size = max(img.size)
scale = max_dim/img_size
img = img.resize((round(img.size[0]*scale), round(img.size[1]*scale)), Image.ANTIALIAS)
img = kp_image.img_to_array(img)
# We need to broadcast the image array such that it has a batch dimension
img = np.expand_dims(img, axis=0)
# preprocess raw images to make it suitable to be used by VGG19 model
out = tf.keras.applications.vgg19.preprocess_input(img)
return tf.convert_to_tensor(out)
示例2: VGG_19
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import VGG19 [as 別名]
def VGG_19(self, nOutput, input):
# Define inputs and outputs IDs
self.ids_inputs = ['input_1']
self.ids_outputs = ['predictions']
# Load VGG19 model pre-trained on ImageNet
self.model = VGG19()
# Recover input layer
image = self.model.get_layer(self.ids_inputs[0]).output
# Recover last layer kept from original model
out = self.model.get_layer('fc2').output
out = Dense(nOutput, name=self.ids_outputs[0], activation='softmax')(out)
self.model = Model(input=image, output=out)
示例3: VGG_19_ImageNet
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import VGG19 [as 別名]
def VGG_19_ImageNet(self, nOutput, input):
# Define inputs and outputs IDs
self.ids_inputs = ['input_1']
self.ids_outputs = ['predictions']
# Load VGG19 model pre-trained on ImageNet
self.model = VGG19(weights='imagenet', layers_lr=0.001)
# Recover input layer
image = self.model.get_layer(self.ids_inputs[0]).output
# Recover last layer kept from original model
out = self.model.get_layer('fc2').output
out = Dense(nOutput, name=self.ids_outputs[0], activation='softmax')(out)
self.model = Model(input=image, output=out)
########################################
# GoogLeNet implementation from http://dandxy89.github.io/ImageModels/googlenet/
########################################
示例4: _get_base_model
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import VGG19 [as 別名]
def _get_base_model(self):
"""
:return: base model from Keras based on user-supplied model name
"""
if self.model_name == 'inception_v3':
return InceptionV3(weights='imagenet', include_top=False)
elif self.model_name == 'xception':
return Xception(weights='imagenet', include_top=False)
elif self.model_name == 'vgg16':
return VGG16(weights='imagenet', include_top=False)
elif self.model_name == 'vgg19':
return VGG19(weights='imagenet', include_top=False)
elif self.model_name == 'resnet50':
return ResNet50(weights='imagenet', include_top=False)
else:
raise ValueError('Cannot find base model %s' % self.model_name)
示例5: extra_feat
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import VGG19 [as 別名]
def extra_feat(img_path):
#Using a VGG19 as feature extractor
base_model = VGG19(weights='imagenet',include_top=False)
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
block1_pool_features=get_activations(base_model, 3, x)
block2_pool_features=get_activations(base_model, 6, x)
block3_pool_features=get_activations(base_model, 10, x)
block4_pool_features=get_activations(base_model, 14, x)
block5_pool_features=get_activations(base_model, 18, x)
x1 = tf.image.resize_images(block1_pool_features[0],[112,112])
x2 = tf.image.resize_images(block2_pool_features[0],[112,112])
x3 = tf.image.resize_images(block3_pool_features[0],[112,112])
x4 = tf.image.resize_images(block4_pool_features[0],[112,112])
x5 = tf.image.resize_images(block5_pool_features[0],[112,112])
F = tf.concat([x3,x2,x1,x4,x5],3) #Change to only x1, x1+x2,x1+x2+x3..so on, inorder to visualize features from diffetrrnt blocks
return F
示例6: model
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import VGG19 [as 別名]
def model(self, preprocessed, featurize):
# Model provided by Keras. All cotributions by Keras are provided subject to the
# MIT license located at https://github.com/fchollet/keras/blob/master/LICENSE
# and subject to the below additional copyrights and licenses.
#
# Copyright 2014 Oxford University
#
# Licensed under the Creative Commons Attribution License CC BY 4.0 ("License").
# You may obtain a copy of the License at
#
# https://creativecommons.org/licenses/by/4.0/
#
return vgg19.VGG19(input_tensor=preprocessed, weights="imagenet",
include_top=(not featurize))
示例7: _testKerasModel
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import VGG19 [as 別名]
def _testKerasModel(self, include_top):
return vgg19.VGG19(weights="imagenet", include_top=include_top)
示例8: build_vgg
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import VGG19 [as 別名]
def build_vgg():
vgg_model = VGG19(include_top=False, weights='imagenet')
vgg_model.trainable = False
return Model(inputs=vgg_model.input, outputs=vgg_model.get_layer('block3_conv4').output)
示例9: compute_loss
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import VGG19 [as 別名]
def compute_loss(model, loss_weights, generated_output_activations, gram_style_features, content_features, num_content_layers, num_style_layers):
generated_content_activations = generated_output_activations[:num_content_layers]
generated_style_activations = generated_output_activations[num_content_layers:]
style_weight, content_weight = loss_weights
style_score = 0
content_score = 0
# Accumulate style losses from all layers
# Here, we equally weight each contribution of each loss layer
weight_per_style_layer = 1.0 / float(num_style_layers)
for target_style, comb_style in zip(gram_style_features, generated_style_activations):
temp = get_style_loss(comb_style[0], target_style)
style_score += weight_per_style_layer * temp
# Accumulate content losses from all layers
weight_per_content_layer = 1.0 / float(num_content_layers)
for target_content, comb_content in zip(content_features, generated_content_activations):
temp = get_content_loss(comb_content[0], target_content)
content_score += weight_per_content_layer* temp
# Get total loss
loss = style_weight*style_score + content_weight*content_score
return loss, style_score, content_score
############################################################################################################
############################################################################################################
# CREATE STYLE TRANFER
############################################################################################################
############################################################################################################
# Using Keras Load VGG19 model
示例10: get_model
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import VGG19 [as 別名]
def get_model(content_layers,style_layers):
# Load our model. We load pretrained VGG, trained on imagenet data
vgg19 = VGG19(weights=None, include_top=False)
# We don't need to (or want to) train any layers of our pre-trained vgg model, so we set it's trainable to false.
vgg19.trainable = False
style_model_outputs = [vgg19.get_layer(name).output for name in style_layers]
content_model_outputs = [vgg19.get_layer(name).output for name in content_layers]
model_outputs = content_model_outputs + style_model_outputs
# Build model
return Model(inputs = vgg19.input, outputs = model_outputs), vgg19
示例11: vgg_norm
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import VGG19 [as 別名]
def vgg_norm():
img_input = Input(shape=(256, 256, 3))
x1 = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input)
x2 = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x1)
x3 = AveragePooling2D((2, 2), strides=(2, 2), name='block1_pool')(x2)
x4 = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x3)
x5 = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x4)
x6 = AveragePooling2D((2, 2), strides=(2, 2), name='block2_pool')(x5)
x7 = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x6)
x8 = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x7)
x9 = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x8)
x10 = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv4')(x9)
x11 = AveragePooling2D((2, 2), strides=(2, 2), name='block3_pool')(x10)
x12 = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x11)
x13 = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x12)
x14 = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x13)
x15 = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv4')(x14)
x16 = AveragePooling2D((2, 2), strides=(2, 2), name='block4_pool')(x15)
x17 = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x16)
x18 = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x17)
x19 = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x18)
x20 = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv4')(x19)
x21 = AveragePooling2D((2, 2), strides=(2, 2), name='block5_pool')(x20)
model = Model(inputs=[img_input], outputs=[x1, x2, x4, x5, x7, x8, x9, x10, x12, x13, x14, x15])
model_orig = VGG19(weights='imagenet', input_shape=(256, 256, 3), include_top=False)
for i in range(len(model.layers)):
weights = model_orig.layers[i].get_weights()
model.layers[i].set_weights(weights)
return model
示例12: create_vgg19_network
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import VGG19 [as 別名]
def create_vgg19_network(input_shape, weights):
base_model = VGG19(input_shape=input_shape, weights=weights)
return Model(inputs=base_model.input, outputs=base_model.get_layer('fc2').output)
示例13: get_model_pretrain
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import VGG19 [as 別名]
def get_model_pretrain(arch):
modlrate = 1
if "VGG16" in arch: base_model = vgg16.VGG16
elif "VGG19" in arch: base_model = vgg19.VGG19
elif "RESNET50" in arch: base_model = resnet50.ResNet50
elif "DENSENET121" in arch: base_model = densenet.DenseNet121
elif "MOBILENET" in arch:
base_model = mobilenet.MobileNet
modlrate = 10
else: print("model not avaiable"); exit()
base_model = base_model(weights='imagenet', include_top=False)
return base_model, modlrate
示例14: extract_VGG19
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import VGG19 [as 別名]
def extract_VGG19(tensor):
from keras.applications.vgg19 import VGG19, preprocess_input
return VGG19(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
示例15: get_model
# 需要導入模塊: from keras.applications import vgg19 [as 別名]
# 或者: from keras.applications.vgg19 import VGG19 [as 別名]
def get_model(weights_path=None):
## [17-june-2018]Use residual after this
input_tensor = Input(shape=(448,448,3))
base_model = VGG19(weights='imagenet', include_top=False, input_tensor=input_tensor)
#base_model.summary()
for layer in base_model.layers:
layer.trainable = False
model = Model(input=base_model.input, output=base_model.get_layer('block5_pool').output)
#model.summary()
#model = VGG19(weights_path)
#model.summary()
return model